TY - BOOK A1 - Bechmann, Wolfgang A1 - Bald, Ilko T1 - Einstieg in die Physikalische Chemie für Naturwissenschaftler T3 - Studienbücher Chemie Lehrbuch N2 - Mit einer ausgewogenen Stoffauswahl aus den Teilgebieten Chemische Thermodynamik, Reaktionskinetik und Elektrochemie wird der Leser an das Studium der Physikalischen Chemie herangeführt. Das Verständnis der Theorie wird durch zahlreiche Aufgabenstellungen und die Angabe ihrer Lösungswege erleichtert. Das Buch gibt dem Studenten darüber hinaus Anregungen für ausgewählte Experimente zu den behandelten Teilgebieten, mit denen sich ein Grundverständnis physikalisch-chemischer Zusammenhänge entwickeln lässt. Y1 - 2018 SN - 978-3-662-55857-7 PB - Springer CY - Berlin ET - 6 ER - TY - THES A1 - Chen, Guoxiang T1 - Nanoparticles at solid interfaces N2 - Nanoparticles (NPs) are particles between 1 and 100 nanometers in size. They have attracted enormous research interests owing to their remarkable physicochemical properties and potential applications in the optics, catalysis, sensing, electronics, or optical devices. The thesis investigates systems of NPs attached to planar substrates. In the first part of the results section of the thesis a new method is presented to immobilize NPs. In many NP applications a strong, persistent adhesion to substrates is a key requirement. Up to now this has been achieved with various methods, which are not always the optimum regarding adhesion strength or applicability. We propose a new method which uses capillarity to enhance the binding agents in the contact area between NP and substrate. The adhesion strength resulting from the new approach is investigated in detail and it is shown that the new approach is superior to older methods in several ways. The following section presents the optical visualization of nano-sized objects through a combination of thin film surface distortion and interference enhanced optical reflection microscopy. It is a new, fast and non-destructive technique. It not only reveals the location of NPs as small as 20nm attached to planar surfaces and embedded in a molecularly thin liquid film. It also allows the measurement of the geometry of the surface distortion of the liquid film. Even for small NPs the meniscus reaches out for micrometers, which is the reason why the NPs produce such a pronounced optical footprint. The nucleation and growth of individual bubbles is presented in chapter 5. Nucleation is a ubiquitous natural phenomenon and of great importance in numerous industrial processes. Typically it occurs on very small scales (nanometers) and it is of a random nature (thermodynamics of small systems). Up to now most experimental nucleation studies deal with a large number of individual nucleation processes to cope with its inherently statistical, spatio-temporal character. In contrast, in this thesis the individual O2-bubble formation from single localized platinum NP active site is studied experimentally. The bubble formation is initiated by the catalytic reaction of H2O2 on the Pt surface. It is studied how the bubble nucleation and growth depends on the NP size, the H2O2 concentration and the substrate surface properties. It is observed that in some cases the bubbles move laterally over the substrate surface, driven by the O2-production and the film ablation. KW - Nanoparticles, Adhesion, Interfaces, Bubble, Imaging Y1 - 2018 ER - TY - THES A1 - Heinke, David T1 - Biokompatible superparamagnetische Nanopartikel BT - Entwicklung von Nanopartikeln für den Einsatz als in-vivo-Diagnostikum insbesondere im Magnetic Particle Imaging N2 - Magnetische Eisenoxidnanopartikel werden bereits seit geraumer Zeit erfolgreich als MRT-Kontrastmittel in der klinischen Bildgebung eingesetzt. Durch Optimierung der magnetischen Eigenschaften der Nanopartikel kann die Aussagekraft von MR-Aufnahmen verbessert und somit der diagnostische Wert einer MR-Anwendung weiter erhöht werden. Neben der Verbesserung bestehender Verfahren wird die bildgebende Diagnostik ebenso durch die Entwicklung neuer Verfahren, wie dem Magnetic Particle Imaging, vorangetrieben. Da hierbei das Messsignal von den magnetischen Nanopartikeln selbst erzeugt wird, birgt das MPI einen enormen Vorteil hinsichtlich der Sensitivität bei gleichzeitig hoher zeitlicher und räumlicher Auflösung. Da es aktuell jedoch keinen kommerziell vertriebenen in vivo-tauglichen MPI-Tracer gibt, besteht ein dringender Bedarf an geeigneten innovativen Tracermaterialien. Daraus resultierte die Motivation dieser Arbeit biokompatible und superparamagnetische Eisenoxidnanopartikel für den Einsatz als in vivo-Diagnostikum insbesondere im Magnetic Particle Imaging zu entwickeln. Auch wenn der Fokus auf der Tracerentwicklung für das MPI lag, wurde ebenso die MR-Performance bewertet, da geeignete Partikel somit alternativ oder zusätzlich als MR-Kontrastmittel mit verbesserten Kontrasteigenschaften eingesetzt werden könnten. Die Synthese der Eisenoxidnanopartikel erfolgte über die partielle Oxidation von gefälltem Eisen(II)-hydroxid und Green Rust sowie eine diffusionskontrollierte Kopräzipitation in einem Hydrogel. Mit der partiellen Oxidation von Eisen(II)-hydroxid und Green Rust konnten erfolgreich biokompatible und über lange Zeit stabile Eisenoxidnanopartikel synthetisiert werden. Zudem wurden geeignete Methoden zur Formulierung und Sterilisierung etabliert, wodurch zahlreiche Voraussetzungen für eine Anwendung als in vivo-Diagnostikum geschaffen wurden. Weiterhin ist auf Grundlage der MPS-Performance eine hervorragende Eignung dieser Partikel als MPI-Tracer zu erwarten, wodurch die Weiterentwicklung der MPI-Technologie maßgeblich vorangetrieben werden könnte. Die Bestimmung der NMR-Relaxivitäten sowie ein initialer in vivo-Versuch zeigten zudem das große Potential der formulierten Nanopartikelsuspensionen als MRT-Kontrastmittel. Die Modifizierung der Partikeloberfläche ermöglicht ferner die Herstellung zielgerichteter Nanopartikel sowie die Markierung von Zellen, wodurch das mögliche Anwendungsspektrum maßgeblich erweitert wurde. Im zweiten Teil wurden Partikel durch eine diffusionskontrollierte Kopräzipitation im Hydrogel, wobei es sich um eine bioinspirierte Modifikation der klassischen Kopräzipitation handelt, synthetisiert, wodurch Partikel mit einer durchschnittlichen Kristallitgröße von 24 nm generiert werden konnten. Die Bestimmung der MPS- und MR-Performance elektrostatisch stabilisierter Partikel ergab vielversprechende Resultate. In Vorbereitung auf die Entwicklung eines in vivo-Diagnostikums wurden die Partikel anschließend erfolgreich sterisch stabilisiert, wodurch der kolloidale Zustand in MilliQ-Wasser über lange Zeit aufrechterhalten werden konnte. Durch Zentrifugation konnten die Partikel zudem erfolgreich in verschiedene Größenfraktionen aufgetrennt werden. Dies ermöglichte die Bestimmung der idealen Aggregatgröße dieses Partikelsystems in Bezug auf die MPS-Performance. N2 - Magnetic nanoparticles have long been successfully implemented in the clinic as contrast agents for magnetic resonance imaging (MRI). Through optimization of the nanoparticles’ magnetic properties, an improvement in the resulting diagnostic images can be achieved, which in turn increases the diagnostic value of the MRI procedure. The advancement of diagnostic imaging is brought about not only through the improvement of established diagnostic techniques, but also through the development of new methodologies such as Magnetic Particle Imaging (MPI). In MPI, the measured signal arises directly from the magnetic particles and, thus, the technique holds great promise in terms of sensitivity and spatial resolution. Since there are currently no commercially available MPI tracers for in vivo use, the development of optimal tracer materials that are biocompatible and, thus, suitable for in vivo application, is becoming increasingly important. Therefore, the aim of this work was to develop biocompatible superparamagnetic iron oxide nanoparticles for application as an in vivo diagnostic agent in particular for MPI. Even though the focus lay on the development of an MPI tracer, the MR performance of the generated magnetic nanoparticles was also addressed, since such particles can be also be used as an MRI contrast agent with improved contrast efficacy. Synthesis of the superparamagnetic iron oxide nanoparticles was performed either via partial oxidation of precipitated iron (II) hydroxide and green rust or through a diffusion-controlled co-precipitation reaction in a hydrogel. The partial oxidation synthetic route gave rise to biocompatible and colloidally stable iron oxide nanoparticles. Furthermore, suitable methods for the formulation and sterilization of these particles were developed, enabling many of the prerequisites for successful in vivo application to be addressed. The resulting outstanding magnetic particle spectra (MPS) performance of the synthesized nanoparticles enables their suitability as an effective MPI tracer, assisting the advancement of the MPI technology. Moreover, the MR relaxivity values of the particles as well as results obtained from a preliminary in vivo MRI experiment revealed the high potential of the formulated nanoparticle suspensions for application as MRI contrast agents. In addition, chemical modification of the particle surface was performed, which enables the fabrication of target-specific nanoparticles as well as magnetic labeling of certain cell types e.g. stem cells. Nanoparticle synthesis via a diffusion-controlled co-precipitation strategy in a hydrogel, which is a bioinspired modification of the classical co-precipitation reaction, resulted in particles with a mean crystal diameter of 24 nm. Measurement of the MPS and MR performances of such electrostatically-stabilized particles revealed promising results. So as to promote the development of these particles for use as in vivo diagnostic agents, the particles were sterically stabilized and were found to be colloidally stable on the long-term in aqueous solution. Through centrifugation, the particles were successfully separated in batches of varying mean particle sizes, allowing for the determination of the ideal size of this particle system in terms of the MPS performance. KW - Magnetic Particle Imaging KW - Magnetresonanztomograpgie KW - magnetic resonance imaging KW - Eisenoxidnanopartikel Y1 - 2018 SN - 978-3-945954-45-4 PB - Infinite Science Publishing CY - Lübeck ER - TY - THES A1 - Rumschöttel, Jens T1 - Charakterisierung von DNA-Polyplexen mit verzweigten reinen und Maltose modifizierten Poly(ethyleniminen) sowie Polyplexen mit Goldnanopartikeln Y1 - 2018 ER - TY - THES A1 - Zhang, Quanchao T1 - Shape-memory properties of polymeric micro-scale objects prepared by electrospinning and electrospraying N2 - The ongoing trend of miniaturizing multifunctional devices, especially for minimally-invasive medical or sensor applications demands new strategies for designing the required functional polymeric micro-components or micro-devices. Here, polymers, which are capable of active movement, when an external stimulus is applied (e.g. shape-memory polymers), are intensively discussed as promising material candidates for realization of multifunctional micro-components. In this context further research activities are needed to gain a better knowledge about the underlying working principles for functionalization of polymeric micro-scale objects with a shape-memory effect. First reports about electrospun solid microfiber scaffolds, demonstrated a much more pronounced shape-memory effect than their bulk counterparts, indicating the high potential of electrospun micro-objects. Based on these initial findings this thesis was aimed at exploring whether the alteration of the geometry of micro-scale electrospun polymeric objects can serve as suitable parameter to tailor their shape-memory properties. The central hypothesis was that different geometries should result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which will influence their mechanical properties as well as thermally-induced shape-memory function. As electrospun micro-scale objects, microfiber scaffolds composed of hollow microfibers with different wall thickness and electrosprayed microparticles as well as their magneto-sensitive nanocomposites all prepared from the same polymer exhibiting pronounced bulk shape-memory properties were investigated. For this work a thermoplastic multiblock copolymer, named PDC, with excellent bulk shape-memory properties, associated with crystallizable oligo(ε-caprolactone) (OCL) switching domains, was chosen for the preparation of electrospun micro-scale objects, while crystallizable oligo(p-dioxanone) (OPDO) segments serve as hard domains in PDC. In the first part of the thesis microfiber scaffolds with different microfiber geometries (solid or hollow with different wall thickness) were discussed. Hollow microfiber based PDC scaffolds were prepared by coaxial electrospinning from a 1, 1, 1, 3, 3, 3 hexafluoro-2-propanol (HFP) solution with a polymer concentration of 13% w·v-1. Here as a first step core-shell fiber scaffolds consisting of microfibers with a PDC shell and sacrificial poly(ethylene glycol) (PEG) core are generated. The hollow PDC microfibers were achieved after dissolving the PEG core with water. The utilization of a fixed electrospinning setup and the same polymer concentration of the PDC spinning solution could ensure the fabrication of microfibers with almost identical outer diameters of 1.4 ± 0.3 µm as determined by scanning electron microscopy (SEM). Different hollow microfiber wall thicknesses of 0.5 ± 0.2 and 0.3 ± 0.2 µm (analyzed by SEM) have been realized by variation of the mass flow rate, while solid microfibers were obtained by coaxial electrospinning without supplying any core solution. Differential scanning calorimetry experiments and tensile tests at ambient temperature revealed an increase in degree of OCL crystallinity form χc,OCL = 34 ± 1% to 43 ± 1% and a decrease in elongation of break from 800 ± 40% to 200 ± 50% associated with an increase in Young´s modulus and failture stress for PDC hollow microfiber scaffolds when compared with soild fibers. The observed effects were enhanced with decreasing wall thickness of the single hollow fibers. The shape-memory properties of the electrospun PDC scaffolds were quantified by cyclic, thermomechanical tensile tests. Here, scaffolds comprising hollow microfibers exhibited lower shape fixity ratios around Rf = 82 ± 1% and higher shape recovery ratios of Rr = 67 ± 1% associated to more pronounced relaxation at constant strain during the first test cycle and a lower switching temperature of Tsw = 33 ± 1 °C than the fibrous meshes consisting of solid microfibers. These findings strongly support the central hypothesis that different fiber geometries (solid or hollow with different wall thickness) in electrospun scaffolds result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which can be applied as design parameter for tailoring their mechanical and shape-memory properties. The second part of the thesis deals with electrosprayed particulate PDC micro-scale objects. Almost spherical PDC microparticles with diameters of 3.9 ± 0.9 μm (as determined by SEM) were achieved by electrospraying of HFP solution with a polymer concentration of 2% w·v-1. In contrast, smaller particles with sizes of 400 ± 100 nm or 1.2 ± 0.3 μm were obtained for the magneto-sensitive composite PDC microparticles containing 23 ± 0.5 wt% superparamagnetic magnetite nanoparticles (mNPs). All prepared PDC microparticles exhibited a similar overall crystallinity like the PDC bulk material as analyzed by DSC. AFM nanoindentation results revealed no influence of the nanofiller incorporation on the local mechanical properties represented by the reduced modulus determined for pure PDC microparticles and magneto-sensitive composite PDC microparticles with similar diameters around 1.3 µm. It was found that the reduced modulus of the nanocomposite microparticles increased substantially with decreasing particles size from 2.4 ± 0.9 GPa (1.2 µm) to 11.9 ± 3.1 GPa (0.4 µm), which can be related to a higher orientation of the macromolecules at the surface of smaller sized microparticles. The magneto-sensitivity of such nanocomposite microparticles could be demonstrated in two aspects. One was by attracting/collecting the composite micro-objects with an external permanent magnet. The other one was by a inductive heating to 44 ± 1 °C, which is well above the melting transition of the OCL switching domains, when compacted to a 10 x 10 mm2 film with a thickness of 10 µm and exposed to an alternating magnet field with an magnetic field strength of 30 kA·m-1. Both functions are of great relevance for designing next generation drug delivery systems combining targeting and on demand release. By a compression approach shape-memory functionalization of individual microparticles could be realized. Here different programming pressures and compression temperatures were applied. The shape-recovery capability of the programmed PDC microparticles was quantified by online and off-line heating experiments analyzed via microscopy measurement. The obtained shape-memory properties were found to be strongly depending on the applied programming pressure and temperature. The best shape-memory performance with a high shape recovery rate of about Rr = 80±1% was obtained when a low pressure of 0.2 MPa was applied at 55 °C. Finally, it was demonstrated that PDC microparticles can be utilized as micro building parts for preparation of a macroscopic film with temporary stability by compression of a densely packed array of PDC microparticles at 60 °C followed by subsequent cooling to ambient temperature. This film disintegrates into individual microparticles upon heating to 60 °C. Based on this technology the design of stable macroscopic release systems can be envisioned, which can be easily fixed at the site of treatment (i.e. by suturing) and disintegrate on demand to microparticles facilitating the drug release. In summary, the results of this thesis could confirm the central hypothesis that the variation of the geometry of polymeric micro-objects is a suitable parameter to adjust their shape-memory performance by changing the degree of macromolecular chain orientation in the specimens or by enabling new functions like on demand disintegration. These fundamental findings might be relevant for designing novel miniaturized multifunctional polymer-based devices. KW - shape-memory effect KW - microparticles KW - hollow microfibers KW - geometry Y1 - 2018 ER - TY - THES A1 - Wang, Li T1 - Reprogrammable, magnetically controlled polymer actuators T1 - Reprogrammierbar, magnetisch gesteuerte Polymeraktuatoren N2 - Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability. At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the “grafting from” approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization. For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation. The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt%/wt%) and the amount of iron oxide in the nanocomposite was 4 wt%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite. The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off. For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C. In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators. N2 - Polymere Materialien, die nach ihrer Programmierung reversible Formänderungen infolge einer thermischen oder elektrischen Stimulation ausführen, können als Aktuatoren in künstlichen Muskeln, sowie Bauteilen in den Bereichen Photonik, Robotik oder Sensorik dienen. Derartige Aktuatormaterialien können mit Hydrogelen, flüssigkristallinen Elastomeren, elektroaktiven Polymeren oder Formgedächtnispolymeren realisiert werden. Wenn die Anwendungsbedingungen eine direkte Erwärmung oder elektrische Stimulation dieser intelligenten Bauteile nicht zulassen, ist eine kontaktlose Aktivierung erforderlich. Eine ferngesteuerte Aktivierung der Aktuatoren wurde für Komposite aus flüssigkristallinen Elastomeren oder Formgedächtnispolymernetzwerken beschrieben, wenn eine anhaltende externe Spannung während der induktiven Erwärmung in einem magnetischen Wechselfeld angewendet wird. Solche Verbundwerkstoffe können jedoch nicht den Anforderungen von Anwendungen entsprechen, die ferngesteuerte freistehende Bewegungen der Aktuatorkomponenten erfordern. Die vorliegende Arbeit untersucht, ob fernsteuerbare Aktuatoren, deren Geometrie umprogrammierbar ist, über magneto-sensitive Multiphasen-Formgedächtnis-Copolymernetzwerk-Komposite, die Eisenoxid-Nanopartikel als magneto-sensitive, multivalente Netzpunkte enthalten, hergestellt werden können. Eine zentrale Hypothese besteht darin, dass ein magnetisch ferngesteuerter (reversibler bidirektionaler) Formgedächtniseffekt bei derartigen Nanokompositen ohne das Anlegen einer äußeren Spannung/Kraft (freistehend) erreicht werden kann, wenn die erforderliche Orientierung der kristallisierbaren Aktuatordomänen (AD) durch eine innere skelettartige Struktur, die durch eine zweite kristallisierbare Phase ausgebildet wird und die Geometrie der Probe bestimmt, sichergestellt werden kann, während die kovalent integrierten, magneto-sensitiven Eisenoxid-Nanopartikel, die kovalent in die ADs integriert sind, als Sensoren für das kontaktlose Aufheizen im Magnetfeld fungieren. Die Polymermatrix dieser Komposite sollte eine phasen-segregierte Morphologie aufweisen, die überwiegend aus kyrstallierbaren AD besteht, wobei zusätzliche andere, höher schmelzende Kristallite nach der Programmierung der Komposite eine skelettartige, geometriebestimmende Gerüststruktur ausbilden (Geometrie bestimmende Domänen, GD), die auf diese Weise die Orientierung der AD während der Aktuation sicherstellen. Das Arbeitsprinzip für die reversiblen bidirektionalen Bewegungen im Multiphasen-Formgedächtnis-PolymerNetzwerk Komposit beruht auf einer schmelzinduzierte Kontraktion (MIC) der orientierten ADs während der induktiven Erwärmung und deren kristallisationsinduzierten Ausdehnung (CIE) während des Abkühlens. Schließlich sollte die Menge an mehrwertigen magneto-empfindlichen Netzpunkten in solch einem Material so gering wie möglich sein, um eine ausreichende Gesamtelastizität des Nanokomposits zu gewährleisten und gleichzeitig ein vollständiges Schmelzen von ADs und GDs durch induktive Erwärmung ermöglichen, die erforderlich ist für die Reprogrammierung des Aktuators.Zunächst wurden oberflächenmodifizierte Eisenoxid-Nanopartikel synthetisiert und untersucht. Das Co-Präzipitationsverfahren wurde angewandt, um mNP auf der Basis von Magnetit mit einer Größe von 12±3 nm zu synthetisieren. In einem nächsten Schritt wurde eine Ringöffnungspolymerisation (ROP) zur kovalenten Oberflächenmodifizierung solcher mNP mit oligo(ε-Caprolacton) (OCL) oder oligo(ω-Pentadecalacton) (OPDL) über den "grafted from" Ansatz durchgeführt. Eine erfolgreiche Beschichtung von mNP mit OCL und OPDL konnte anhand von zwei Schmelzpeaks bei 52±1 °C (mNP-OCL) und 89±1 °C für mNP-OPDL in DSCExperimenten bestätigt werden. Es wurde weiter untersucht, ob mit einer zweiten oberflächeninitiierten ROP aus mNP-OCL oder mNP-OPDL durch Umsetzung mit ω-Pentadecalacton oder ε-Caprolacton zweischichtig oberflächenmodifizierte mNPs hergestellt werden können. Die Beobachtung von zwei unterschiedlichen Schmelzübergängen in DSCAufheizkurven sowie die mittels Gelpermeationschromatographie und 1H-NMR bestimmte Molekulargewichtszunahme der abgelösten oligomeren Beschichtungen bestätigten eine erfolgreiche Synthese der zweischichtig modifizierten Nanopartikel (mNP-OCL-OPDL und mNPOPDL-OCL). Im Gegensatz dazu zeigten TEM-Aufnahmen eine Reduktion der Dicke der Polymerbeschichtung auf den Nanopartikeln nach der zweiten ROP. Dies deutet darauf hin, dass die angewandte Synthese und Aufreinigung eine weitere Optimierung bedarf. Zur Untersuchung des Einflusses der Verteilung der mNP in einer Polymermatrix auf das magnetische Aufheizverhalten der Komposite wurden sowohl mNP als auch OCL-beschichtete Magnetit-Nanopartikel (mNP-OCL) physikalisch in vernetzte Poly(ε-caprolacton) Netzwerke eingearbeitet. In einem magnetischen Wechselfeld (AMF) mit einer magnetischen Feldstärke von H = 30 kA·m-1 wurden induktive Aufheizexperimente mit beiden Kompositmaterialien cPCL/mNP und cPCL/mNP-OCL durchgeführt. Dabei wurde für cPCL/mNP-OCL eine Massetemperatur von Tbulk = 74±2 °C erreicht, die um fast 20 °C höher lag als der ix Schmelzübergang der PCL-basierten Polymermatrix. Im Gegensatz dazu konnte für das Komposit mit einfachen mNP nur eine Tbulk von 48±2 °C erreicht werden, was für ein vollständiges Schmelzen aller PCL-Kristallite nicht ausreichend ist, wie es für eine kontaklose Schaltung des Formgedächtniseffektes erforderlich wäre. Als nächstes wurden multiphasige Nanokompositnetzwerke hergestellt, die oberflächenmodifizierte mNP als kovalente Netzpunkte enthalten. Diese Komposite wurden aus sternförmigen OCL und OPDL Precursoren, mNP-OCL durch Reaktion mit HDI synthetisiert. Das Gewichtsverhältnis von OPDL und OCL in der Reaktionsmischung betrug 15/85, und die Menge an Eisenoxid in den Nanokompositen entsprach 4 wt%. DSC-Experimente zeigten je zwei gut getrennte Schmelz- und Kristallisationspeaks, die die erforderliche phasen-segregierte Morphologie in den Nanokompositen NC-mNP-OCL bestätigten. TEM-Aufnahmen zeigten ebenfalls eine phasen-separierte Morphologie der Polymermatrix auf der Mikroebene mit tröpfchenförmigen Bereichen, die den in der OCL-Matrix dispergierten OPDL-Domänen zugeordnet werden können. Die Untersuchungen zum induktiven Aufheizverhalten der Nanokomposite bei einer Magnetfeldstärke von Hhigh = 11.2 kA·m-1 ergaben eine Oberflächen-Plateautemperatur von Tsurf = 57±1 °C. Eine effektive Wärmeerzeugungskonstante ̅P kann aus einem kinetischen Monte Carlo-Modellansatz abgeleitet werden, diese ist proportional zur Rate der Wärmeerzeugung pro Volumeneinheit der Probe. Für das untersuchte Nanokomposit betrug ̅P = 1.04±0.01 K·s-1 bei Hhigh, wohingegen bei einer Magnetfeldstärke von Hreset = 30.0 kA·m-1 eine Oberflächentemperatur von Tsurf = 88±1 °C erreicht wurde, bei der alle OPDL Kristallite aufgeschmolzen sind und der ̅P-Wert 1.93±0.02 K·s-1 betrug, welches ein gutes magnetische Aufheizverhalten charakterisiert. Der freistehende magnetisch gesteuerte reversible Formgedächtniseffekt (mrSME) wurde mit Nanokompositstreifen untersucht, der durch Biegen auf einen Winkel von 180° programmiert wurden. Durch Anwendung eines Magnetfeldes von Hhigh = 11.2 kA·m-1 wurden die Komposite auf ca. 60 °C aufgeheizt (erforderlich für das vollständige Aufschmelzen von OCL-Kristallen), und durch Ausschalten des Magnetfeldes (H0 = 0 kA·m-1) auf Umgebungstemperatur abgekühlt. Ein ausgeprägter mrSME konnte für eine durch Biegen programmierten Probe beobachtetet werden, mit Änderungen im Biegewinkel von Δϐrev = 20±3°. In einem mehrzyklischen magnetischen Biegeversuch mit 600 Heiz/Kühlzyklen konnte gezeigt werden, dass sich die Aktuations-Performance mit zunehmender Anzahl an Prüfzyklen nicht verändert, was die Zuverlässigkeit dieses Soft-Aktuators dokumentiert. Der Grad der Auslenkung (Winkeländerung) während der Aktuation sowie die Kinetik der Formänderung während des Erhitzens können durch Variation der magnetischen Feldstärke zwischen Hlow = 10.0 kA·m-1 und Hhigh sowie Einwirkzeit des Magnetfelds eingestellt werden. Nach Anwendung von Hreset = 30.0 kA·m-1 wird die programmierte Geometrie gelöscht und die nimmt wieder ihre ursprünglich gerade Form ein. Die Reprogrammierbarkeit der Nanokomposit-Aktuatoren wurde am Beispiel ein und desselben Probekörpers demonstriert, der nach Programmierung durch Biegen zunächst eine reversible Winkeländerungen bei Aktivierung vollführt, anschließend zu einer Ziehharmonika umprogrammiert wurde, die sich bei induktiver Erwärmung zusammenzieht und bei Kühlung auf Raumtemperatur ausdehnt und abschließend zu einer clipartigen Form umprogrammiert wurde, welche sich bei induktiver Erwärmung im Magnetfeld schließt und beim Kühlen wieder öffnet. In einem nächsten Schritt wurde die grundsätzliche Anwendbarkeit der vorgestellten fernsteuerbaren Formgedächtnispolymer-Aktuatoren am Beispiel des wiederholten Öffnens und Schließens einer aus NC-mNP-OCL hergestellten Multiringvorrichtung demonstriert. Dieser Demonstrator öffnet und schließt sich, wenn ein Magnetfeld von (Hhigh = 11.2 kA·m-1) wiederholend ein- und ausgeschaltet wird. Zur Untersuchung der mikro- und nanostruturellen Veränderungen im Zusammenhang mit der Aktuation der entwickelten Nanokomposite wurden AFM- und WAXS-Experimente an programmierten Nanokompositproben unter zyklischen Erwärmen und Kühlen von 25 °C auf 60 °C durchgeführt. In AFM-Experimenten wurde die Änderung des Abstands (D) zwischen repräsentativen tröpfchenartigen OPDL-Strukturen (GD) verwendet, um die reversible Änderung in D zu berechnen. Hierbei wurde Drev = 3.5±1% für NC-mNP-OCL gefunden, die mit den Ergebnissen der magneto-mechanischen Experimente gut übereinstimmen. Schließlich konnte die Analyse der azimutalen (radialen) WAXS-Streuprofile die orientierte Kristallisation der OCLAktuatordomänen bei abkühlen von 60 °C auf 25 °C zeigen. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass Formgedächtnispolymer-Nanokomposite, die mNP als magneto-sensitive multifunktionelle Netzpunkte in einer kovalent vernetzten Multiphasen-Polymermatrix enthalten, eine ferngesteuerte, freistehende Aktuation bei wiederholter Exposition in einem magnetischen Wechselfeld aufweisen. Ferner kann der Formspeicher der Nanokomposite gelöscht werden, indem diese Temperaturen oberhalb der Schmelztemperatur der geometriebestimmenden Domänen (OPDL) ausgesetzt werden, was eine Neuprogrammierung der Aktuatoren in beliebige andere Formen ermöglicht. Die Ergebnisse dieser Arbeit könnten für die Konstruktion neuartiger, umprogrammierbarer und fernsteuerbarer Polymer-Aktuatoren relevant sein. KW - materials science KW - actuator KW - magnetic nanoparticles KW - shape-memory polymer KW - nanocomposite KW - Aktuator KW - magnetische Nanopartikel KW - Formgedächtnispolymer KW - Nanokomposite Y1 - 2018 ER - TY - THES A1 - Zimmermann, Diana T1 - Direkte Arylierung BT - eine alternative Synthesemethode zur Herstellung von Absorberpolymeren für die organische Photovoltaik Y1 - 2018 ER -