TY - JOUR A1 - Metz, Johannes A1 - Tielboerger, Katja T1 - Spatial and temporal aridity gradients provide poor proxies for plant-plant interactions under climate change: a large-scale experiment JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. Plant-plant interactions may critically modify the impact of climate change on plant communities. However, the magnitude and even direction of potential future interactions remains highly debated, especially for water-limited ecosystems. Predictions range from increasing facilitation to increasing competition with future aridification. 2. The different methodologies used for assessing plant-plant interactions under changing environmental conditions may affect the outcome but they are not equally represented in the literature. Mechanistic experimental manipulations are rare compared with correlative approaches that infer future patterns from current observations along spatial climatic gradients. 3. Here, we utilize a unique climatic gradient in combination with a large-scale, long-term experiment to test whether predictions about plant-plant interactions yield similar results when using experimental manipulations, spatial gradients or temporal variation. We assessed shrub-annual interactions in three different sites along a natural rainfall gradient (spatial) during 9 years of varying rainfall (temporal) and 8 years of dry and wet manipulations of ambient rainfall (experimental) that closely mimicked regional climate scenarios. 4. The results were fundamentally different among all three approaches. Experimental water manipulations hardly altered shrub effects on annual plant communities for the assessed fitness parameters biomass and survival. Along the spatial gradient, shrub effects shifted from clearly negative to mildly facilitative towards drier sites, whereas temporal variation showed the opposite trend: more negative shrub effects in drier years. 5. Based on our experimental approach, we conclude that shrub-annual interaction will remain similar under climate change. In contrast, the commonly applied space-for-time approach based on spatial gradients would have suggested increasing facilitative effects with climate change. We discuss potential mechanisms governing the differences among the three approaches. 6. Our study highlights the critical importance of long-term experimental manipulations for evaluating climate change impacts. Correlative approaches, for example along spatial or temporal gradients, may be misleading and overestimate the response of plant-plant interactions to climate change. KW - annual plant communities KW - climate manipulation KW - competition KW - facilitation KW - Mediterranean shrubland KW - nurse plant KW - rainfall gradient KW - Sarcopoterium spinosum KW - semi-arid KW - stress-gradient hypothesis Y1 - 2016 U6 - https://doi.org/10.1111/1365-2435.12599 SN - 0269-8463 SN - 1365-2435 VL - 30 SP - 20 EP - 29 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - de Figueiredo, Jose Vidal A1 - de Araujo, Jose Carlos A1 - Medeiros, Pedro Henrique Augusto A1 - Costa, Alexandre C. T1 - Runoff initiation in a preserved semiarid Caatinga small watershed, Northeastern Brazil JF - Hydrological processes N2 - This study analyses some hydrological driving forces and their interrelation with surface-flow initiation in a semiarid Caatinga basin (12km(2)), Northeastern Brazil. During the analysis period (2005 - 2014), 118 events with precipitation higher than 10mm were monitored, providing 45 events with runoff, 25 with negligible runoff and 49 without runoff. To verify the dominant processes, 179 on-site measurements of saturated hydraulic conductivity (Ksat) were conducted. The results showed that annual runoff coefficient lay below 0.5% and discharge at the outlet has only occurred four days per annum on average, providing an insight to the surface-water scarcity of the Caatinga biome. The most relevant variables to explain runoff initiation were total precipitation and maximum 60-min rainfall intensity (I-60). Runoff always occurred when rainfall surpassed 31mm, but it never occurred for rainfall below 14mm or for I-60 below 12mmh(-1). The fact that the duration of the critical intensity is similar to the basin concentration time (65min) and that the infiltration threshold value approaches the river-bank saturated hydraulic conductivity support the assumption that Hortonian runoff prevails. However, none of the analysed variables (total or precedent precipitation, soil moisture content, rainfall intensities or rainfall duration) has been able to explain the runoff initiation in all monitored events: the best criteria, e.g. failed to explain 27% of the events. It is possible that surface-flow initiation in the Caatinga biome is strongly influenced by the root-system dynamics, which changes macro-porosity status and, therefore, initial abstraction. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - hydraulic conductivity KW - soil moisture KW - root system KW - semi-arid KW - Caatinga KW - connectivity Y1 - 2016 U6 - https://doi.org/10.1002/hyp.10801 SN - 0885-6087 SN - 1099-1085 VL - 30 SP - 2390 EP - 2400 PB - Wiley CY - Hoboken ER -