TY - JOUR A1 - Zehbe, Rolf A1 - Zehbe, Kerstin T1 - Strontium doped poly-epsilon-caprolactone composite scaffolds made by reactive foaming JF - The European journal of the history of economic thought N2 - In the reconstruction and regeneration of bone tissue, a primary goal is to initiate bone growth and to stabilize the surrounding bone. In this regard, a potentially useful component in biomaterials for bone tissue engineering is strontium, which acts as cationic active agent, triggering certain intracellular pathways and acting as so called dual action bone agent which inhibits bone resorption while stimulating bone regeneration. In this study we established a novel processing for the foaming of a polymer (poly-epsilon-caprolactone) and simultaneous chemical reaction of a mixture of calcium and strontium hydroxides to the respective carbonates using supercritical carbon dioxide. The resultant porous composite scaffold was optimized in composition and strontium content and was characterized via different spectroscopic (infrared and Raman spectroscopy, energy dispersive X-ray spectroscopy), imaging (SEM, mu CT), mechanical testing and in vitro methods (fluorescence vital staining, MTT-assay). As a result, the composite scaffold showed good in vitro biocompatibility with partly open pore structure and the expected chemistry. First mechanical testing results indicate sufficient mechanical stability to support future in vivo applications. (C) 2016 Elsevier B.V. All rights reserved. KW - Strontium KW - Poly-epsilon-caprolactone KW - Porous scaffold KW - CAL-72 osteoblasts KW - L-929 fibroblasts KW - Reactive foaming KW - mu CT imaging KW - Spectroscopy Y1 - 2016 U6 - https://doi.org/10.1016/j.msec.2016.05.045 SN - 0928-4931 SN - 1873-0191 VL - 67 SP - 259 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties JF - International journal of molecular sciences N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2016 U6 - https://doi.org/10.3390/ijms17030391 SN - 1422-0067 VL - 17 PB - MDPI CY - Basel ER -