TY - JOUR A1 - Islam, Khan Shaiful A1 - Khalil, Mahmoud A1 - Männer, K. A1 - Raila, Jens A1 - Rawel, Harshadrai Manilal A1 - Zentek, J. A1 - Schweigert, Florian J. T1 - Effect of dietary alpha-tocopherol on the bioavailability of lutein in laying hen JF - Journal of animal physiology and animal nutrition N2 - Lutein and its isomer zeaxanthin have gained considerable interest as possible nutritional ingredient in the prevention of age-related macular degeneration (AMD) in humans. Egg yolk is a rich source of these carotenoids. As an oxidative sensitive component, antioxidants such as -tocopherol (T) might contribute to an improved accumulation in egg yolk. To test this, chickens were fed lutein esters (LE) with and without -tocopherol as an antioxidant. After depletion on a wheat-soya bean-based lutein-poor diet for 21days, laying hens (n=42) were equally divided into three groups and fed the following diets for 21days: control (basal diet), a LE group (40mg LE/kg feed) and LE+T group (40mg LE plus 100mg T/kg feed). Eggs and blood were collected periodically. Carotenoids and -tocopherol in yolk and blood plasma were determined by HPLC. Egg yolk was also analysed for total carotenoids using a one-step spectrophotometric method (iCheck(())). Lutein, zeaxanthin, -tocopherol and total carotenoids in egg yolk were highest after 14days of feeding and decreased slightly afterwards. At the end of the trial, eggs of LE+T group contained higher amount of lutein (13.72), zeaxanthin (0.65), -tocopherol (297.40) and total carotenoids (21.6) compared to the LE group (10.96, 0.55, 205.20 and 18.0mg/kg, respectively, p<0.05). Blood plasma values of LE+T group contain higher lutein (1.3), zeaxanthin (0.06) and tocopherol (20.1) compared to LE group (1.02, 0.04 and 14.90mg/l, respectively, p<0.05). In conclusion, dietary -tocopherol enhances bioavailability of lutein reflecting higher content in egg yolk and blood plasma. Improved bioavailability might be due to increased absorption of lutein in the presence of tocopherol and/or a greater stability of lutein/zeaxanthin due to the presence of -tocopherol as an antioxidant. KW - carotenoids KW - tocopherol KW - egg yolk KW - bioavailability KW - HPLC KW - iCheck Y1 - 2016 U6 - https://doi.org/10.1111/jpn.12464 SN - 0931-2439 SN - 1439-0396 VL - 100 SP - 868 EP - 875 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schmiedchen, Bettina A1 - Longardt, Ann Carolin A1 - Loui, Andrea A1 - Buehrer, Christoph A1 - Raila, Jens A1 - Schweigert, Florian J. T1 - Effect of vitamin A supplementation on the urinary retinol excretion in very low birth weight infants JF - European journal of pediatrics : official organ of the Belgian Pediatric Association N2 - Despite high-dose vitamin A supplementation of very low birth weight infants (VLBW, <1500 g), their vitamin A status does not improve substantially. Unknown is the impact of urinary retinol excretion on the serum retinol concentration in these infants. Therefore, the effect of high-dose vitamin A supplementation on the urinary vitamin A excretion in VLBW infants was investigated. Sixty-three VLBW infants were treated with vitamin A (5000 IU intramuscular, 3 times/week for 4 weeks); 38 untreated infants were classified as control group. On days 3 and 28 of life, retinol, retinol-binding protein 4 (RBP4), glomerular filtration rate, proteinuria, and Tamm-Horsfall protein were quantified in urine. On day 3 of life, substantial retinol and RBP4 losses were found in both groups, which significantly decreased until day 28. Notwithstanding, the retinol excretion was higher (P<0.01) under vitamin A supplementation as compared to infants of the control group. On day 28 of life, the urinary retinol concentrations were predictive for serum retinol concentrations in the vitamin A treated (P<0.01), but not in the control group (P=0.570). Conclusion: High urinary retinol excretion may limit the vitamin A supplementation efficacy in VLBW infants. Advanced age and thus postnatal kidney maturation seems to be an important contributor in the prevention of urinary retinol losses. KW - Vitamin A supplementation KW - RBP4 KW - Very low birth weight infant KW - Urine excretion Y1 - 2016 U6 - https://doi.org/10.1007/s00431-015-2647-9 SN - 0340-6199 SN - 1432-1076 VL - 175 SP - 365 EP - 372 PB - Springer CY - New York ER - TY - GEN A1 - Paßlack, Nadine A1 - Schmiedchen, Bettina A1 - Raila, Jens A1 - Schweigert, Florian J. A1 - Stumpff, Friederike A1 - Kohn, Barbara A1 - Neumann, Konrad A1 - Zentek, Jürgen T1 - Impact of increasing dietary calcium levels on calcium excretion and vitamin D metabolites in the blood of healthy adult cats T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Dietary calcium (Ca) concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P): 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter). Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken. Results Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001) with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OH)D-2 and 25(OH)D-3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033). Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02) and postprandial pH (6.01) (P < 0.001), possibly mediated by an increase of urinary phosphorus (P) concentrations (P < 0.001). Conclusions In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 542 KW - chronic kidney-disease KW - growth-factor 23 KW - parathyroid-hormone KW - urinary ph KW - phosphorus KW - FGF23 KW - deficiency KW - dogs KW - hypercalciuria KW - secretion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411302 SN - 1866-8372 IS - 542 ER - TY - JOUR A1 - Passlack, Nadine A1 - Schmiedchen, Bettina A1 - Raila, Jens A1 - Schweigert, Florian J. A1 - Stumpff, Friederike A1 - Kohn, Barbara A1 - Neumann, Konrad A1 - Zentek, Juergen T1 - Impact of Increasing Dietary Calcium Levels on Calcium Excretion and Vitamin D Metabolites in the Blood of Healthy Adult Cats JF - PLoS one N2 - Background Dietary calcium (Ca) concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P): 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter). Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken. Results Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001) with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OH)D-2 and 25(OH)D-3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033). Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02) and postprandial pH (6.01) (P < 0.001), possibly mediated by an increase of urinary phosphorus (P) concentrations (P < 0.001). Conclusions In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149190 SN - 1932-6203 VL - 11 SP - 47 EP - 67 PB - PLoS CY - San Fransisco ER -