TY - JOUR A1 - Gessner, Oliver A1 - Gühr, Markus T1 - Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy JF - Accounts of chemical research N2 - The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only similar to 200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and photocatalytic activity have been performed based on the combination of strong light absorption in dye molecules with charge separation and transport in adjacent semiconductor nanostructures. However, a fundamental understanding of the enabling and limiting dynamics on critical atomic length- and time scales is often still lacking. Femtosecond time-resolved X-ray photoelectron spectroscopy is employed to gain a better understanding of a short-lived intermediate that may be linked to the unexpectedly limited performance of ZnO based dye-sensitized solar cells by delaying the generation of free charge carriers. The transient spectra strongly suggest that photoexcited dye molecules attached to ZnO nanocrystals inject their charges into the substrate within less than 1 ps but the electrons are then temporarily trapped at the surface of the semiconductor in direct vicinity of the injecting molecules. The experiments are extended to monitor the electronic response of the semiconductor substrate to the collective injection from a monolayer of dye molecules and the subsequent electron-ion recombination dynamics. The results indicate some qualitative similarities but quantitative differences between the recombination dynamics at molecule-semiconductor interfaces and previously studied bulk-surface electron-hole recombination dynamics in photoexcited semiconductors. Y1 - 2016 U6 - https://doi.org/10.1021/acs.accounts.5b00361 SN - 0001-4842 SN - 1520-4898 VL - 49 SP - 138 EP - 145 PB - American Chemical Society CY - Washington ER -