TY - JOUR A1 - Dejonghe, Wim A1 - Kuenen, Sabine A1 - Mylle, Evelien A1 - Vasileva, Mina A1 - Keech, Olivier A1 - Viotti, Corrado A1 - Swerts, Jef A1 - Fendrych, Matyas A1 - Ortiz-Morea, Fausto Andres A1 - Mishev, Kiril A1 - Delang, Simon A1 - Scholl, Stefan A1 - Zarza, Xavier A1 - Heilmann, Mareike A1 - Kourelis, Jiorgos A1 - Kasprowicz, Jaroslaw A1 - Nguyen, Le Son Long A1 - Drozdzecki, Andrzej A1 - Van Houtte, Isabelle A1 - Szatmari, Anna-Maria A1 - Majda, Mateusz A1 - Baisa, Gary A1 - Bednarek, Sebastian York A1 - Robert, Stephanie A1 - Audenaert, Dominique A1 - Testerink, Christa A1 - Munnik, Teun A1 - Van Damme, Daniel A1 - Heilmann, Ingo A1 - Schumacher, Karin A1 - Winne, Johan A1 - Friml, Jiri A1 - Verstreken, Patrik A1 - Russinova, Eugenia T1 - Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification JF - Nature Communications N2 - ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11710 SN - 2041-1723 VL - 7 SP - 1959 EP - 1968 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Mao, Hailiang A1 - Nakamura, Moritaka A1 - Viotti, Corrado A1 - Grebe, Markus T1 - A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-Binding cassette transporter T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 909 KW - precursor indole-3-butyric acid KW - GNOM ARF-GEF KW - plasma-membrane KW - exocyst complex KW - auxin transport KW - planar polarity KW - Arabidopsis-thaliana KW - fluorescent protein KW - soil interface KW - cell polarity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441302 SN - 1866-8372 IS - 909 SP - 2245 EP - 2260 ER - TY - JOUR A1 - Mao, Hailiang A1 - Nakamura, Moritaka A1 - Viotti, Corrado A1 - Grebe, Markus T1 - A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity. Y1 - 2016 U6 - https://doi.org/10.1104/pp.16.01252 SN - 0032-0889 SN - 1532-2548 VL - 172 SP - 2245 EP - 2260 PB - American Society of Plant Physiologists CY - Rockville ER -