TY - JOUR A1 - Ripepi, Vincenzo A1 - Marconi, M. A1 - Moretti, M. I. A1 - Clementini, Gisella A1 - Cioni, Maria-Rosa L. A1 - de Grijs, Richard A1 - Emerson, J. P. A1 - Groenewegen, M. A. T. A1 - Ivanov, V. D. A1 - Piatti, A. E. T1 - THE VMC SURVEY. XIX. CLASSICAL CEPHEIDS IN THE SMALL MAGELLANIC CLOUD JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The "VISTA near-infrared YJK(s) survey of the Magellanic Clouds System" (VMC) is collecting deep K-s-band time-series photometry of pulsating variable stars hosted by the two Magellanic Clouds and their connecting Bridge. In this paper, we present Y, J, K-s light curves for a sample of 4172 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with literature V values, allowed us to construct a variety of period-luminosity (PL), period-luminosity-color (PLC), and period-Wesenheit (PW) relationships, which are valid for Fundamental (F), First Overtone (FO), and Second Overtone (SO) pulsators. The relations involving the V, J, K-s bands are in agreement with their counterparts in the literature. As for the Y band, to our knowledge, we present the first CC PL, PW, and PLC relations ever derived using this filter. We also present the first near-infrared PL, PW, and PLC relations for SO pulsators to date. We used PW(V, K-s) to estimate the relative SMC-LMC distance and, in turn, the absolute distance to the SMC. For the former quantity, we find a value of Delta mu = 0.55. +/- 0.04 mag, which is in rather good agreement with other evaluations based on CCs, but significantly larger than the results obtained from older population II distance indicators. This discrepancy might be due to the different geometric distributions of young and old tracers in both Clouds. As for the absolute distance to the SMC, our best estimates are mu(SMC) = 19.01 +/- 0.05 mag and mu(SMC) = 19.04 +/- 0.06 mag, based on two distance measurements to the LMC which rely on accurate CC and eclipsing Cepheid binary data, respectively. KW - distance scale KW - Magellanic Clouds KW - stars: oscillations KW - stars: variables: Cepheids Y1 - 2016 U6 - https://doi.org/10.3847/0067-0049/224/2/21 SN - 0067-0049 SN - 1538-4365 VL - 224 SP - 199 EP - 229 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kronberg, Elena A. A1 - Rashev, M. V. A1 - Daly, P. W. A1 - Shprits, Yuri A1 - Turner, D. L. A1 - Drozdov, Alexander A1 - Dobynde, M. A1 - Kellerman, Adam C. A1 - Fritz, T. A. A1 - Pierrard, V. A1 - Borremans, K. A1 - Klecker, B. A1 - Friedel, R. T1 - Contamination in electron observations of the silicon detector on board JF - Space Weather: The International Journal of Research and Applications N2 - Since more than 15 years, the Cluster mission passes through Earth's radiation belts at least once every 2 days for several hours, measuring the electron intensity at energies from 30 to 400 keV. These data have previously been considered not usable due to contamination caused by penetrating energetic particles (protons at >100 keV and electrons at >400 keV). In this study, we assess the level of distortion of energetic electron spectra from the Research with Adaptive Particle Imaging Detector (RAPID)/Imaging Electron Spectrometer (IES) detector, determining the efficiency of its shielding. We base our assessment on the analysis of experimental data and a radiation transport code (Geant4). In simulations, we use the incident particle energy distribution of the AE9/AP9 radiation belt models. We identify the Roederer L values, L⋆, and energy channels that should be used with caution: at 3≤L⋆≤4, all energy channels (40–400 keV) are contaminated by protons (≃230 to 630 keV and >600 MeV); at L⋆≃1 and 4–6, the energy channels at 95–400 keV are contaminated by high-energy electrons (>400 keV). Comparison of the data with electron and proton observations from RBSP/MagEIS indicates that the subtraction of proton fluxes at energies ≃ 230–630 keV from the IES electron data adequately removes the proton contamination. We demonstrate the usefulness of the corrected data for scientific applications. Y1 - 2016 U6 - https://doi.org/10.1002/2016SW001369 SN - 1542-7390 VL - 14 SP - 449 EP - 462 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schwarzl, Maria A1 - Godec, Aljaz A1 - Oshanin, Gleb A1 - Metzler, Ralf T1 - A single predator charging a herd of prey: effects of self volume and predator-prey decision-making JF - Journal of physics : A, Mathematical and theoretical N2 - We study the degree of success of a single predator hunting a herd of prey on a two-dimensional square lattice landscape. We explicitly consider the self volume of the prey restraining their dynamics on the lattice. The movement of both predator and prey is chosen to include an intelligent, decision making step based on their respective sighting ranges, the radius in which they can detect the other species (prey cannot recognise each other besides the self volume interaction): after spotting each other the motion of prey and predator turns from a nearest neighbour random walk into directed escape or chase, respectively. We consider a large range of prey densities and sighting ranges and compute the mean first passage time for a predator to catch a prey as well as characterise the effective dynamics of the hunted prey. We find that the prey's sighting range dominates their life expectancy and the predator profits more from a bad eyesight of the prey than from his own good eye sight. We characterise the dynamics in terms of the mean distance between the predator and the nearest prey. It turns out that effectively the dynamics of this distance coordinate can be captured in terms of a simple Ornstein–Uhlenbeck picture. Reducing the many-body problem to a simple two-body problem by imagining predator and nearest prey to be connected by an effective Hookean bond, all features of the model such as prey density and sighting ranges merge into the effective binding constant. KW - first passage process KW - diffusion KW - predator-prey model Y1 - 2016 U6 - https://doi.org/10.1088/1751-8113/49/22/225601 SN - 1751-8113 SN - 1751-8121 VL - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Reconstruction of a neural network from a time series of firing rates JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Randomly coupled neural fields demonstrate irregular variation of firing rates, if the coupling is strong enough, as has been shown by Sompolinsky et al. [Phys. Rev. Lett. 61, 259 (1988)]. We present a method for reconstruction of the coupling matrix from a time series of irregular firing rates. The approach is based on the particular property of the nonlinearity in the coupling, as the latter is determined by a sigmoidal gain function. We demonstrate that for a large enough data set and a small measurement noise, the method gives an accurate estimation of the coupling matrix and of other parameters of the system, including the gain function. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.93.062313 SN - 2470-0045 SN - 2470-0053 VL - 93 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities? JF - Applied physics letters N2 - The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets. Ferroelectrets (sometimes also called piezoelectrets) are relatively new members of the family of piezo-, pyro-, and ferroelectric materials.1–5 As their name indicates, ferroelectrets are space-charge electrets that show ferroic behavior. They are non-uniform electret materials or materials systems with electrically charged internal cavities. As space-charge electrets, ferroelectrets usually do not contain any molecular dipoles. However, the cavities inside the material can be turned into macroscopic dipoles through a series of micro-plasma discharges at high electric fields, so-called dielectric barrier discharges (DBDs).6–8 The gas inside the cavities is ionized when the internal electric field exceeds the threshold for electrical breakdown, generating charges of both polarities.9 The positive and negative charges travel in opposite directions, and are eventually trapped at the internal top and bottom surfaces of the cavities, respectively. After charging, the cavities may be regarded as macroscopic dipoles that can be switched by reversing the applied voltage. An electric-polarization-vs.-electric-field (P(E)) hysteresis is considered as an essential criterion for ferroelectricity. P(E)-hysteresis curves are usually characterized by the spontaneous polarization, the coercive field, and the remanent polarization. Recently, we have demonstrated P(E)-hysteresis loops on two different types of ferroelectrets, namely, cellular polypropylene ferroelectrets and tubular-channel fluoroethylene-polypropylene copolymer ferroelectrets.10,11 The P(E)-hysteresis loops not only prove the ferroic behavior of ferroelectrets, but also allow us to determine such parameters as the coercive field and the remanent polarization. It is widely accepted that Paschen breakdown is the underlying mechanism for the inception of DBDs in ferroelectrets.12–14 On this basis, the charging behavior and the resulting piezoelectricity of ferroelectrets in different gases at various pressures have been studied.15–17 Paschen's law describes the conditions for electrical breakdown in a gas at a constant temperature (usually room temperature), and it needs to be modified for gas breakdown at other temperatures. The temperature stability of the piezoelectricity in ferroelectrets after charging at elevated temperatures was investigated by several researchers.18–21 Recently, a preliminary report about the effects of the charging temperature on the hysteresis loops in ferroelectrets has been presented.22 In this letter, the influence of the gas temperature on the charging of ferroelectret systems is investigated in more detail by means of quasi-ferroelectric hysteresis-loop measurements. Teflon™ fluoroethylenepropylene (FEP) copolymer samples with tubular channels were prepared via thermal lamination as described previously.23 To this end, two FEP films with a thickness of 50 μm each were laminated at 300 ° C around a 100 μm thick polytetrafluoroethylene (PTFE) template (total area 35 mm × 45 mm) that contains parallel rectangular openings (area 1.5 mm × 40 mm each). After lamination, the template was removed, which results in an FEP film system with open tubular channels. The samples were metallized on both surfaces with aluminum electrodes of 20 mm diameter. P(E)-hysteresis loops were obtained with a modified Sawyer–Tower (ST) circuit.10,11 A high-voltage (HV) capacitor C1 (3 nF) and a large standard capacitor Cm (1 μF) were connected in series with the sample. A bipolar sinusoidal voltage with a frequency of 10 mHz was applied from an HV power supply (FUG HCB 7-6500) controlled by an arbitrary-waveform generator (HP 33120a). The voltage Vout on Cm is measured by means of an electrometer (HP 3458a), and the charge flowing through the circuit is determined as Q(t)=CmVout(t) . The experiments were carried out at isothermal conditions in a Novocontrol® Quatro cryosystem. With the modified ST circuit, Q–V loops have been measured on a tubular-channel FEP ferroelectret system at different temperatures. The sample capacitance of about 34.5 pF is determined by a linear fit of the initial part of the Q–V curve recorded at 20 °C , where the voltage has been raised up from zero on a fresh sample. The hysteresis loops are obtained from the Q–V curves by subtracting the contribution that results from charging of the sample capacitance.10 Figure 1 shows the hysteresis loops of the sample at −100, 0, and +100 ° C, respectively. According to previous theoretical and experimental studies,24,25 the length of each of the horizontal sides of the parallelogram-like hysteresis loops is given by 2Vth where Vth is the threshold voltage. As the charging temperature decreases, the hysteresis loop becomes wider and less high, i.e., the threshold voltage increases, while the polarization at maximum voltage decreases. Y1 - 2016 U6 - https://doi.org/10.1063/1.4954263 SN - 0003-6951 SN - 1077-3118 VL - 108 SP - 1687 EP - 1697 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Moretti, M. I. A1 - Clementini, Gisella A1 - Marconi, V. Ripepi M. A1 - Rubele, S. A1 - Cioni, Maria-Rosa L. A1 - Muraveva, T. A1 - Groenewegen, M. A. T. A1 - Cross, N. J. G. A1 - Ivanov, V. D. A1 - Piatti, A. E. A1 - de Grijs, Richard T1 - The VMC survey - XX. Identification of new Cepheids in the Small Magellanic Cloud JF - Monthly notices of the Royal Astronomical Society N2 - We present K-s-band light curves for 299 Cepheids in the Small Magellanic Cloud (SMC) of which 288 are new discoveries that we have identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VMC). The new Cepheids have periods in the range from 0.34 to 9.1 d and cover the magnitude interval 12.9 <= currency sign < K-s > <= currency sign 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC K-s-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet. KW - methods: data analysis KW - surveys KW - stars: variables: Cepheids KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw716 SN - 0035-8711 SN - 1365-2966 VL - 459 SP - 1687 EP - 1697 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Rettig, L. A1 - Dornes, C. A1 - Thielemann-Kuehn, Nele A1 - Pontius, N. A1 - Zabel, Hartmut A1 - Schlagel, D. L. A1 - Lograsso, T. A. A1 - Chollet, M. A1 - Robert, A. A1 - Sikorski, M. A1 - Song, S. A1 - Glownia, J. M. A1 - Schuessler-Langeheine, Christian A1 - Johnson, S. L. A1 - Staub, U. T1 - Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho JF - Physical review letters N2 - Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L-3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p -> 5d) or quadrupole (E2, 2p -> 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-tau) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.116.257202 SN - 0031-9007 SN - 1079-7114 VL - 116 SP - 6382 EP - 6389 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mueller, Lars A1 - Nanova, Diana A1 - Glaser, Tobias A1 - Beck, Sebastian A1 - Pucci, Annemarie A1 - Kast, Anne K. A1 - Schroeder, Rasmus R. A1 - Mankel, Eric A1 - Pingel, Patrick A1 - Neher, Dieter A1 - Kowalsky, Wolfgang A1 - Lovrincic, Robert T1 - Charge-Transfer-Solvent Interaction Predefines Doping Efficiency in p-Doped P3HT Films JF - Chemistry of materials : a publication of the American Chemical Society N2 - Efficient electrical doping of organic semiconductors is a necessary prerequisite for the fabrication of high performance organic electronic devices. In this work, we study p-type doping of poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) spin-cast from two different solvents. Using electron diffraction, we find strong dopant-induced pi-pi-stacking for films from the solvent chloroform, but not from chlorobenzene. This image is confirmed and expanded by the analysis of vibrational features of P3HT and polaron absorptions using optical spectroscopy. Here, a red-shifted polaron absorption is found in doped films from chloroform, caused by a higher conjugation length of the polymer backbone. These differences result in a higher conductivity of films from chloroform. We use optical spectroscopy on the corresponding blend solutions to shed light on the origin of this effect and propose a model to explain why solutions of doped P3HT reveal more aggregation of charged molecules in chlorobenzene, whereas more order is finally observed in dried films from chloroform. Our study emphasizes the importance of solvent parameters exceeding the bare solubility of pure dopant and host material for the preparation of highly conductive doped films. Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemmater.6b01629 SN - 0897-4756 SN - 1520-5002 VL - 28 SP - 4432 EP - 4439 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Nagornov, Roman A1 - Osipoy, Grigory A1 - Komarov, Maxim A1 - Pikovskij, Arkadij A1 - Shilnikov, Andrey T1 - Mixed-mode synchronization between two inhibitory neurons with post-inhibitory rebound JF - Communications in nonlinear science & numerical simulation N2 - We study an array of activity rhythms generated by a half-center oscillator (HCO), represented by a pair of reciprocally coupled neurons with post-inhibitory rebounds (PIR). Such coupling induced bursting possesses two time scales, one for fast spiking and another for slow quiescent periods, is shown to exhibit an array of synchronization properties. We discuss several HCO configurations constituted by two endogenous bursters, by tonic-spiking and quiescent neurons, as well as mixed-mode configurations composed of neurons of different type. We demonstrate that burst synchronization can be accompanied by complex, often chaotic, interactions of fast spikes within synchronized bursts. (C) 2015 Elsevier B.V. All rights reserved. KW - Synchronization KW - Hodgkin-Huxley model KW - Half-center oscillator KW - Post-inhibitory rebound Y1 - 2016 U6 - https://doi.org/10.1016/j.cnsns.2015.11.024 SN - 1007-5704 SN - 1878-7274 VL - 36 SP - 175 EP - 191 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Shenar, Tomer A1 - Hainich, Rainer A1 - Todt, Helge Tobias A1 - Sander, Andreas Alexander Christoph A1 - Hamann, Wolf-Rainer A1 - Moffat, Anthony F. J. A1 - Eldridge, J. J. A1 - Pablo, H. A1 - Oskinova, Lidia M. A1 - Richardson, N. D. T1 - Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries JF - American mineralogist : an international journal of earth and planetary materials N2 - Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity. KW - stars: massive KW - stars: Wolf-Rayet KW - stars: evolution KW - binaries: close KW - binaries: symbiotic KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527916 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Guber, Christoph R. A1 - Richter, Philipp T1 - Dust depletion of Ca and Ti in QSO absorption-line systems JF - Wiley Interdisciplinary Reviews : Water N2 - Aims. To explore the role of titanium-and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods. We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z <= 0.5 to measure column densities (or limits) for Ca II and Ti II. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z similar to 3.8. Our absorber sample contains 110 absorbers including damped Lyman alpha systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the MilkyWay and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results. Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] approximate to 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions. We conclude that Ca II and Ti II bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems. KW - quasars: absorption lines KW - dust, extinction KW - galaxies: abundances KW - galaxies: ISM KW - intergalactic medium Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628466 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lidia M. A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Dzhanoev, Arsen R. A1 - Schmidt, J. A1 - Liu, X. A1 - Spahn, Frank T1 - Charging of small grains in a space plasma: Application to Jovian stream particles JF - International psychogeriatrics N2 - Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams. Aims. We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. Methods. We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain. Results. For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of NaCl grains. KW - plasmas KW - planets and satellites: individual: Jupiter Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527891 SN - 1432-0746 VL - 591 SP - 647 EP - 684 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Abeysekara, A. U. A1 - Archambault, S. A1 - Archer, A. A1 - Benbow, W. A1 - Bird, R. A1 - Biteau, Jonathan A1 - Buchovecky, M. A1 - Buckley, J. H. A1 - Bugaev, V. A1 - Byrum, K. A1 - Cardenzana, J. V. A1 - Cerruti, M. A1 - Chen, Xuhui A1 - Christiansen, J. L. A1 - Ciupik, L. A1 - Connolly, M. P. A1 - Cui, W. A1 - Dickinson, H. J. A1 - Dumm, J. A1 - Eisch, J. D. A1 - Errando, M. A1 - Falcone, A. A1 - Feng, Q. A1 - Finley, J. P. A1 - Fleischhack, H. A1 - Flinders, A. A1 - Fortin, P. A1 - Fortson, L. A1 - Furniss, A. A1 - Gillanders, G. H. A1 - Griffin, S. A1 - Grube, J. A1 - Gyuk, G. A1 - Huetten, M. A1 - Hanna, D. A1 - Holder, J. A1 - Humensky, T. B. A1 - Johnson, C. A. A1 - Kaaret, P. A1 - Kar, P. A1 - Kelley-Hoskins, N. A1 - Kertzman, M. A1 - Kieda, D. A1 - Krause, M. A1 - Krennrich, F. A1 - Lang, M. J. A1 - Maier, G. A1 - McArthur, S. A1 - McCann, A. A1 - Meagher, K. A1 - Moriarty, P. A1 - Mukherjee, R. A1 - Nieto, D. A1 - Ong, R. A. A1 - Otte, A. N. A1 - Park, N. A1 - Pelassa, V. A1 - Petrashyk, A. A1 - Petry, D. A1 - Pohl, Martin A1 - Popkow, A. A1 - Pueschel, Elisa A1 - Quinn, J. A1 - Ragan, K. A1 - Ratliff, G. A1 - Reyes, L. C. A1 - Reynolds, P. T. A1 - Reynolds, K. A1 - Richards, G. T. A1 - Roache, E. A1 - Rulten, C. A1 - Santander, M. A1 - Sembroski, G. H. A1 - Shahinyan, K. A1 - Smith, A. W. A1 - Staszak, D. A1 - Telezhinsky, Igor O. A1 - Tucci, J. V. A1 - Tyler, J. A1 - Vincent, S. A1 - Wakely, S. P. A1 - Weiner, O. M. A1 - Weinstein, A. A1 - Wilhelm, Alina A1 - Williams, D. A. A1 - Zitzer, B. T1 - VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196 JF - Monthly notices of the Royal Astronomical Society N2 - We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state. KW - astroparticle physics KW - relativistic processes KW - galaxies: individual: 1ES 1741+196=VER J1744+195 Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw664 SN - 0035-8711 SN - 1365-2966 VL - 459 SP - 2550 EP - 2557 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Liu, Xiaodong A1 - Sachse, Manuel A1 - Spahn, Frank A1 - Schmidt, Jurgen T1 - Dynamics and distribution of Jovian dust ejected from the Galilean satellites JF - Journal of geophysical research, Planets N2 - In this paper, the dynamical analysis of the Jovian dust originating from the four Galilean moons is presented. High-accuracy orbital integrations of dust particles are used to determine their dynamical evolution. A variety of forces are taken into account, including the Lorentz force, solar radiation pressure, Poynting-Robertson drag, solar gravity, the satellites' gravity, plasma drag, and gravitational effects due to nonsphericity of Jupiter. More than 20,000 dust particles from each source moon in the size range from 0.05 μm to 1 cm are simulated over 8000 (Earth) years until each dust grain hits a sink (moons, Jupiter, or escape from the system). Configurations of dust number density in the Jovicentric equatorial inertial frame are calculated and shown. In a Jovicentric frame rotating with the Sun the dust distributions are found to be asymmetric. For certain small particle sizes, the dust population is displaced towards the Sun, while for certain larger sizes, the dust population is displaced away from the Sun. The average lifetime as a function of particle size for ejecta from each source moon is derived, and two sharp jumps in the average lifetime are analyzed. Transport of dust between the Galilean moons and to Jupiter is investigated. Most of the orbits for dust particles from Galilean moons are prograde, while, surprisingly, a small fraction of orbits are found to become retrograde mainly due to solar radiation pressure and Lorentz force. The distribution of orbital elements is also analyzed. Y1 - 2016 U6 - https://doi.org/10.1002/2016JE004999 SN - 2169-9097 SN - 2169-9100 VL - 121 SP - 1141 EP - 1173 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Pedatella, Nick M. A1 - Fang, T. -W. A1 - Jin, Hao A1 - Sassi, F. A1 - Schmidt, H. A1 - Chau, Jorge Luis A1 - Siddiqui, Tarique Adnan A1 - Goncharenko, L. T1 - Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming JF - Journal of geophysical research : Space physics N2 - A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean Fregion peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75 degrees W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated ionosphere variability in GAIA, WAM+GIP, and WACCMX+TIMEGCM. KW - ionosphere KW - sudden stratosphere warming Y1 - 2016 U6 - https://doi.org/10.1002/2016JA022859 SN - 2169-9380 SN - 2169-9402 VL - 121 SP - 7204 EP - 7225 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Quade, Markus A1 - Abel, Markus A1 - Shafi, Kamran A1 - Niven, Robert K. A1 - Noack, Bernd R. T1 - Prediction of dynamical systems by symbolic regression JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study the modeling and prediction of dynamical systems based on conventional models derived from measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to model from physical principles or simplified models need to be found. We focus on symbolic regression methods as a part of machine learning. These algorithms are capable of learning an analytically tractable model from data, a highly valuable property. Symbolic regression methods can be considered as generalized regression methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized linear regression algorithm, and genetic programming which is a very general method. Both are able to combine functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world application, the prediction of solar power production based on energy production observations at a given site together with the weather forecast. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.94.012214 SN - 2470-0045 SN - 2470-0053 VL - 94 PB - American Society for Pharmacology and Experimental Therapeutics CY - Bethesda ER - TY - JOUR A1 - Piatti, Andres E. A1 - Ivanov, Valentin D. A1 - Rubele, Stefano A1 - Marconi, Marcella A1 - Ripepi, Vincenzo A1 - Cioni, Maria-Rosa L. A1 - Oliveira, Joana M. A1 - Bekki, Kenji T1 - The VMC Survey - XXI. New star cluster candidates discovered from infrared photometry in the Small Magellanic Cloud JF - Monthly notices of the Royal Astronomical Society KW - techniques: photometric KW - galaxies: individual: SMC KW - Magellanic Clouds Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1000 SN - 0035-8711 SN - 1365-2966 VL - 460 SP - 383 EP - 395 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bodrova, Anna S. A1 - Chechkin, Aleksei V. A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion JF - Scientific reports N2 - It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases. Y1 - 2016 U6 - https://doi.org/10.1038/srep30520 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kopyshev, Alexey A1 - Galvin, Casey J. A1 - Patil, Rohan R. A1 - Genzer, Jan A1 - Lomadze, Nino A1 - Feldmann, David A1 - Zakrevski, Juri A1 - Santer, Svetlana T1 - Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes JF - Applied physics : A, Materials science & processing N2 - We investigate light-induced changes in thickness and roughness of photosensitive polymer brushes containing azobenzene cationic surfactants by atomic force microscopy (AFM) in real time during light irradiation. Because the cis-state of azobenzene unit requires more free volume than its trans counterpart, the UV light-induced expansion of polymer thin films associated with the trans-to-cis isomerism of azobenzene groups is expected to occur. This phenomenon is well documented in physisorbed polymer films containing azobenzene groups. In contrast, photosensitive polymer brushes show a decrease in thickness under UV irradiation. We have found that the azobenzene surfactants in their trans-state form aggregates within the brush. Under irradiation, the surfactants undergo photoisomerization to the cis-state, which is more hydrophilic. As a consequence, the aggregates within the brush are disrupted, and the polymer brush contracts. When subsequently irradiated with blue light the polymer brush thickness returns back to its initial value. This behavior is related to isomerization of the surfactant to the more hydrophobic trans-state and subsequent formation of surfactant aggregates within the polymer brush. The photomechanical function of the dry polymer brush, i.e., contraction and expansion, was found to be reversible with repeated irradiation cycles and requires only a few seconds for switching. In addition to the thickness change, the roughness of the brush also changes reversibly between a few Angstroms (blue light) and several nanometers (UV light). Photosensitive polymer brushes represent smart films with light responsive thickness and roughness that could be used for generating dynamic fluctuating surfaces, the function of which can be turned on and off in a controllable manner on a nanometer length scale. KW - photosensitive brushes KW - azobenzene containing surfactants KW - light driven reversible change of surface topography and thickness KW - domain memory in polymer brushes KW - orientation of azobenzenes in polymer brushes Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b06881 SN - 1944-8244 VL - 8 SP - 19175 EP - 19184 PB - American Chemical Society CY - Washington ER -