TY - JOUR A1 - Knebel, Constanze A1 - Neeb, Jannika A1 - Zahn, Elisabeth A1 - Schmidt, Flavia A1 - Carazo, Alejandro A1 - Holas, Ondej A1 - Pavek, Petr A1 - Püschel, Gerhard Paul A1 - Zanger, Ulrich M. A1 - Süssmuth, Roderich A1 - Lampen, Alfonso A1 - Marx-Stoelting, Philip A1 - Braeuning, Albert T1 - Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells JF - Toxicological sciences N2 - Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems. KW - triazole fungicides KW - constitutive androstane receptor KW - pregnane X-receptor KW - enzyme induction KW - liver toxicity KW - mixtures Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy026 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 1 SP - 170 EP - 181 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman, Charles Dominic A1 - Schraplau, Anne A1 - Joehrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model JF - Scientific reports N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-34633-y SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Neuschäfer-Rube, Frank A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Hippenstiel, Stefan A1 - Püschel, Gerhard Paul T1 - PGE(2) enhanced TNF alpha-mediated IL-8 induction in monocytic cell lines and PBMC JF - Cytokine N2 - Background & purpose: Recent studies suggested a role of prostaglandin E-2 (PGE(2)) in the expression of the chemokine IL-8 by monocytes. The function of EP4 receptor for TNF alpha-induced IL-8 expression was studied in monocytic cell lines. Experimental approach: IL-8 mRNA and protein induction as well as IL-8 promoter activity and transcription factor activation were assessed in monocytic cell lines, primary blood mononuclear cells (PBMC) and transgenic HEK293 cells expressing the EP4 receptor. Key results: In monocytic cell lines THP-1, MonoMac and U937 PGE(2) had only a marginal impact on IL-8 induction but strongly enhanced TNFa-induced IL-8 mRNA and protein synthesis. Similarly, in PBMC IL-8 mRNA induction was larger by simultaneous stimulation with TNF alpha and PGE(2) than by either stimulus alone. The EP4 receptor subtype was the most abundant EP receptor in all three cell lines and in PBMC. Stimulation of THP-1 cells with an EP4 specific agonist enhanced TNF alpha-induced IL-8 mRNA and protein formation to the same extent as PGE(2). In HEK293 cells expressing EP4, but not in wild type HEK293 cells lacking EP4, PGE(2) enhanced TNFainduced IL-8 protein and mRNA synthesis. In THP-1 cells, the enhancement of TNF alpha-mediated IL-8 mRNA induction by PGE(2) was mimicked by a PICA-activator. Furthermore in these cells PGE(2) induced expression of transcription factor C/EBPS, enhanced NF-KB activation by TNFa and inhibited TNF alpha-mediated AP-1 activation. PGE(2) and TNF alpha synergistically activated transcription factor CREB, induced C/EBPS expression and enhanced the activity of an IL-8 promoter fragment containing-223 bp upstream of the transcription start site. Conclusions and implications: These findings suggest that a combined stimulation of TNF alpha and PGE(2)/EP4 signal chains in monocytic cells leads to maximal IL-8 promoter activity, as well as IL-8 mRNA and protein induction, by activating the PICA/CREB/C/EB1313 as well as NF-kappa B signal chains. KW - Monocyte KW - Prostaglandin receptor EP4 KW - IL-8 transcription KW - Signal transduction KW - Tumor necrosis factor alpha Y1 - 2018 U6 - https://doi.org/10.1016/j.cyto.2018.06.020 SN - 1043-4666 SN - 1096-0023 VL - 113 SP - 105 EP - 116 PB - Elsevier CY - London ER - TY - JOUR A1 - Henkel, Janin A1 - Coleman Mac Gregor of Inneregny, Charles Dominic A1 - Schraplau, Anne A1 - Jöhrens, Korinna A1 - Weiss, Thomas Siegfried A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Püschel, Gerhard Paul T1 - Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model JF - Scientific Reports N2 - In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH. KW - suppress VLDL secretion KW - mice lacking KW - nonalcoholic steatohepatthis KW - insulin-resistance KW - rat hepatocytes KW - kupffer cells KW - E-2 KW - disease KW - expression KW - accumulation Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-34633-y SN - 2045-2322 IS - 8 SP - 1 EP - 11 PB - Nature Research CY - London ER - TY - JOUR A1 - Henkel, Janin A1 - Alfine, Eugenia A1 - Saín, Juliana A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, José Pedro A1 - König, Jeannette A1 - Stuhlmann, Christin A1 - Vahrenbrink, Madita A1 - Jonas, Wenke A1 - Kleinridders, André A1 - Püschel, Gerhard Paul T1 - Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol JF - Nutrients N2 - While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease. KW - non-alcoholic fatty liver disease (NAFLD) KW - NASH KW - cholesterol KW - PUFA KW - inflammation KW - oxidative stress Y1 - 2018 U6 - https://doi.org/10.3390/nu10091326 SN - 2072-6643 VL - 10 IS - 9 SP - 1 EP - 17 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Haas, Gerald A1 - Langoth-Fehringer, Nina A1 - Püschel, Gerhard Paul T1 - Cell-Based Reporter Release Assay to Determine the Potency of Proteolytic Bacterial Neurotoxins JF - Toxins N2 - Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose–response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays. KW - botulinum toxin KW - BoNT KW - tetanus toxin KW - RRR KW - replacement Y1 - 2018 U6 - https://doi.org/10.3390/toxins10090360 SN - 2072-6651 VL - 10 IS - 9 SP - 1 EP - 10 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER -