TY - JOUR A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity JF - Soft matter N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm52846d SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1591 EP - 1601 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Bauer, Maximilian A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - Diffusion of finite-size particles in two-dimensional channels with random wall configurations JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda Y1 - 2014 U6 - https://doi.org/10.1039/c3cp55160a SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 13 SP - 6118 EP - 6128 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto charged Janus nanospheres JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02207f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 29 SP - 15539 EP - 15550 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM), a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is < x(2)(t) similar or equal to 2K(t)t with K(t) similar or equal to t(alpha-1) for 0 < alpha < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion, for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely, we demonstrate that under confinement, the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments, in particular, under confinement inside cellular compartments or when optical tweezers tracking methods are used. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02019g SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 30 SP - 15811 EP - 15817 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Metzler, Ralf A1 - Jeon, Jae-Hyung A1 - Cherstvy, Andrey G. A1 - Barkai, Eli T1 - Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp03465a SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 44 SP - 24128 EP - 24164 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Ala-Nissila, Tapio A1 - Metzler, Ralf T1 - Polymer translocation: the first two decades and the recent diversification JF - Soft matter N2 - Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis. Y1 - 2014 U6 - https://doi.org/10.1039/c4sm01819b SN - 1744-683X SN - 1744-6848 VL - 10 IS - 45 SP - 9016 EP - 9037 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Nezhadhaghighi, M. Ghasemi A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Numerical approach to unbiased and driven generalized elastic model JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent beta characterizing the growth of the mean squared displacement <(delta h)(2)> of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858425 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Metzler, Ralf T1 - Speeding up the first-passage for subdiffusion by introducing a finite potential barrier JF - Journal of physics : A, Mathematical and theoretical N2 - We show that for a subdiffusive continuous time random walk with scale-free waiting time distribution the first-passage dynamics on a finite interval can be optimized by introduction of a piecewise linear potential barrier. Analytical results for the survival probability and first-passage density based on the fractional Fokker-Planck equation are shown to agree well with Monte Carlo simulations results. As an application we discuss an improved design for efficient translocation of gradient copolymers compared to homopolymer translocation in a quasi-equilibrium approximation. KW - first passage KW - anomalous diffusion KW - potential landscape KW - polymer translocation Y1 - 2014 U6 - https://doi.org/10.1088/1751-8113/47/3/032002 SN - 1751-8113 SN - 1751-8121 VL - 47 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Tomovski, Zivorad T1 - Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise JF - Journal of mathematical physics N2 - We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion. Y1 - 2014 U6 - https://doi.org/10.1063/1.4863478 SN - 0022-2488 SN - 1089-7658 VL - 55 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Levy flights do not always optimize random blind search for sparse targets JF - Proceedings of the National Academy of Sciences of the United States of America N2 - It is generally believed that random search processes based on scale-free, Levy stable jump length distributions (Levy flights) optimize the search for sparse targets. Here we show that this popular search advantage is less universal than commonly assumed. We study the efficiency of a minimalist search model based on Levy flights in the absence and presence of an external drift (underwater current, atmospheric wind, a preference of the walker owing to prior experience, or a general bias in an abstract search space) based on two different optimization criteria with respect to minimal search time and search reliability (cumulative arrival probability). Although Levy flights turn out to be efficient search processes when the target is far from the starting point, or when relative to the starting point the target is upstream, we show that for close targets and for downstream target positioning regular Brownian motion turns out to be the advantageous search strategy. Contrary to claims that Levy flights with a critical exponent alpha = 1 are optimal for the search of sparse targets in different settings, based on our optimization parameters the optimal a may range in the entire interval (1, 2) and especially include Brownian motion as the overall most efficient search strategy. KW - search optimization KW - stochastic processes KW - Levy foraging hypothesis Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1320424111 SN - 0027-8424 VL - 111 IS - 8 SP - 2931 EP - 2936 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Schulz, Johannes H. P. A1 - Barkai, Eli A1 - Metzler, Ralf T1 - Aging renewal theory and application to random walks JF - Physical review : X, Expanding access N2 - We discuss a renewal process in which successive events are separated by scale-free waiting time periods. Among other ubiquitous long-time properties, this process exhibits aging: events counted initially in a time interval [0, t] statistically strongly differ from those observed at later times [t(a,) t(a) + t]. The versatility of renewal theory is owed to its abstract formulation. Renewals can be interpreted as steps of a random walk, switching events in two-state models, domain crossings of a random motion, etc. In complex, disordered media, processes with scale-free waiting times play a particularly prominent role. We set up a unified analytical foundation for such anomalous dynamics by discussing in detail the distribution of the aging renewal process. We analyze its half-discrete, half-continuous nature and study its aging time evolution. These results are readily used to discuss a scale-free anomalous diffusion process, the continuous-time random walk. By this, we not only shed light on the profound origins of its characteristic features, such as weak ergodicity breaking, along the way, we also add an extended discussion on aging effects. In particular, we find that the aging behavior of time and ensemble averages is conceptually very distinct, but their time scaling is identical at high ages. Finally, we show how more complex motion models are readily constructed on the basis of aging renewal dynamics. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevX.4.011028 SN - 2160-3308 VL - 4 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Goychuk, Igor A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - How Molecular Motors Work in the Crowded Environment of Living Cells: Coexistence and Efficiency of Normal and Anomalous Transport JF - PLoS one N2 - Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0091700 SN - 1932-6203 VL - 9 IS - 3 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Talukder, Srijeeta A1 - Sen, Shrabani A1 - Chakraborti, Prantik A1 - Metzler, Ralf A1 - Banik, Suman K. A1 - Chaudhury, Pinaki T1 - Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction epsilon(hb)(AT) for an AT base pair and the ring factor. turn out to be the most sensitive parameters. In addition, the stacking interaction epsilon(st)(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization. (c) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4869112 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 12 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Shin, Jaeoh A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Sensing viruses by mechanical tension of DNA in responsive hydrogels JF - Physical review : X, Expanding access N2 - The rapid worldwide spread of severe viral infections, often involving novel mutations of viruses, poses major challenges to our health-care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for broad applications in local health-care centers, such tools should be relatively cheap and easy to use. In this paper, we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of prestretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay as a possible tool for efficient and specific virus screening. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevX.4.021002 SN - 2160-3308 VL - 4 IS - 2 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Talukder, Srijeeta A1 - Sen, Shrabani A1 - Chakraborti, Prantik A1 - Metzler, Ralf A1 - Banik, Suman K. A1 - Chaudhury, Pinaki T1 - Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA T2 - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction epsilon(hb)(AT) for an AT base pair and the ring factor. turn out to be the most sensitive parameters. In addition, the stacking interaction epsilon(st)(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization. Y1 - 2014 U6 - https://doi.org/10.1063/1.4871297 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 14 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Krüsemann, Henning A1 - Godec, Aljaz A1 - Metzler, Ralf T1 - First-passage statistics for aging diffusion in systems with annealed and quenched disorder JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Aging, the dependence of the dynamics of a physical process on the time t(a) since its original preparation, is observed in systems ranging from the motion of charge carriers in amorphous semiconductors over the blinking dynamics of quantum dots to the tracer dispersion in living biological cells. Here we study the effects of aging on one of the most fundamental properties of a stochastic process, the first-passage dynamics. We find that for an aging continuous time random walk process, the scaling exponent of the density of first-passage times changes twice as the aging progresses and reveals an intermediate scaling regime. The first-passage dynamics depends on t(a) differently for intermediate and strong aging. Similar crossovers are obtained for the first-passage dynamics for a confined and driven particle. Comparison to the motion of an aged particle in the quenched trap model with a bias shows excellent agreement with our analytical findings. Our results demonstrate how first-passage measurements can be used to unravel the age t(a) of a physical system. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevE.89.040101 SN - 1539-3755 SN - 1550-2376 VL - 89 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Shin, Jaeoh A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Mixing and segregation of ring polymers: spatial confinement and molecular crowding effects JF - New journal of physics : the open-access journal for physics N2 - During the life cycle of bacterial cells the non-mixing of the two ring-shaped daughter genomes is an important prerequisite for the cell division process. Mimicking the environments inside highly crowded biological cells, we study the dynamics and statistical behavior of two flexible ring polymers in the presence of cylindrical confinement and crowding molecules. From extensive computer simulations we determine the degree of ring-ring overlap and the number of inter-monomer contacts for varying volume fractions phi of crowders. We also examine the entropic demixing of polymer rings in the presence of mobile crowders and determine the characteristic times of the internal polymer dynamics. Effects of the ring length on ring-ring overlap are also analyzed. In particular, on systematic variation of the fraction of crowding molecules, a (1 - phi)-scaling is found for the ring-ring overlap length along the cylinder axis, and a non-monotonic dependence of the 3D ring-ring contact number with a maximum at phi approximate to 0.2 is obtained. Our results demonstrate that polymer rings are demixed and separated by particular entropy-favourable partitioning of crowders along the axis of the cylindrical simulation box. These findings help to rationalize the implications of macromolecular crowding for circular DNA molecules in confined spaces inside bacteria as well as in localized cellular compartments inside eukaryotic cells. KW - polymers KW - confinement KW - crowding Y1 - 2014 U6 - https://doi.org/10.1088/1367-2630/16/5/053047 SN - 1367-2630 VL - 16 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) similar to vertical bar x vertical bar(alpha) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x, t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus vertical bar alpha vertical bar of the scaling exponent. The fluctuations appear to diverge when the critical value alpha = 2 is approached, while for even larger alpha the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevE.90.012134 SN - 1539-3755 SN - 1550-2376 VL - 90 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Goychuk, Igor A1 - Kharchenko, Vasyl O. A1 - Metzler, Ralf T1 - Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01234h SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 31 SP - 16524 EP - 16535 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Deformation propagation in responsive polymer network films JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We study the elastic deformations in a cross-linked polymer network film triggered by the binding of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dynamics simulations we quantify how far the network deformations propagate depending on the elasticity parameters of the network and the adhesion strength of the particles. We examine the dynamics of the collective area shrinkage of the network and obtain some simple relations for the associated characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is distributed between stretching and compression modes in response to the particle binding. We also examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky particles in the polymer network film as a function of the particle-particle separation. The results of this computational study provide new insight into collective phenomena in soft polymer network films and may, in particular, be applied to applications for visual detection of pathogens such as viruses via a macroscopic response of thin films of cross-linked hydrogels. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4893056 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 7 PB - American Institute of Physics CY - Melville ER -