TY - THES A1 - Seelig, Stefan T1 - Parafoveal processing of lexical information during reading T1 - Parafoveale Verarbeitung lexikalischer Informationen beim Lesen BT - from experiments to computational modeling BT - von Experimenten zu computationaler Modellierung N2 - During sentence reading the eyes quickly jump from word to word to sample visual information with the high acuity of the fovea. Lexical properties of the currently fixated word are known to affect the duration of the fixation, reflecting an interaction of word processing with oculomotor planning. While low level properties of words in the parafovea can likewise affect the current fixation duration, results concerning the influence of lexical properties have been ambiguous (Drieghe, Rayner, & Pollatsek, 2008; Kliegl, Nuthmann, & Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects using the boundary paradigm have instead shown, that lexical properties of parafoveal previews affect fixation durations on the upcoming target words (Risse & Kliegl, 2014). However, the results were potentially confounded with effects of preview validity. The notion of parafoveal processing of lexical information challenges extant models of eye movements during reading. Models containing serial word processing assumptions have trouble explaining such effects, as they usually couple successful word processing to saccade planning, resulting in skipping of the parafoveal word. Although models with parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, & Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency. Here we combine the results of a boundary experiment (Chapter 2) with a predictive modeling approach using the SWIFT model, where we explore mechanisms of parafoveal inhibition in a simulation study (Chapter 4). We construct a likelihood function for the SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to parameter estimation (Chapter 3 & 4). The experimental results show a substantial effect of parafoveal preview frequency on fixation durations on the target word, which can be clearly distinguished from the effect of preview validity. Using the eye movement data from the participants, we demonstrate the feasibility of the Bayesian approach even for a small set of estimated parameters, by comparing summary statistics of experimental and simulated data. Finally, we can show that the SWIFT model can account for the lexical preview effects, when a mechanism for parafoveal inhibition is added. The effects of preview validity were modeled best, when processing dependent saccade cancellation was added for invalid trials. In the simulation study only the control condition of the experiment was used for parameter estimation, allowing for cross validation. Simultaneously the number of free parameters was increased. High correlations of summary statistics demonstrate the capabilities of the parameter estimation approach. Taken together, the results advocate for a better integration of experimental data into computational modeling via parameter estimation. N2 - Während des Lesens springt der Blick von Wort zu Wort, um visuelle Informationen mithilfe der hohen Auflösung der Fovea aufzunehmen. Lexikalische Eigenschaften eines zurzeit fixierten Wortes wirken sich dabei auf die Fixationsdauer aus, was eine Interaktion von Wortverarbeitung mit okulomotorischer Bewegungsplanung impliziert. Während Low-Level-Eigenschaften eines parafovealen Wortes ebenfalls die Fixationsdauer beeinflussen können, sind Ergebnisse zu Einflüssen lexikalischer Eigenschaften parafoveler Worte uneindeutig (Drieghe et al., 2008; Kliegl et al., 2006). Experimentelle Untersuchungen solcher parafoveal-on-foveal-Effekte mittels des Boundary-Paradigmas zeigten stattdessen, dass sich lexikalische Eigenschaften parafovealer Worte auf Fixationsdauern auf den Target-Wörtern auswirken (Risse & Kliegl, 2014). Diese Ergebnisse waren jedoch möglicherweise mit den Effekten der Preview-Validität konfundiert. Die Möglichkeit parafovealer Verarbeitung lexikalischer Informationen stellt bestehende Modelle für Blickbewegungen beim Lesen vor Probleme. Modelle, die auf seriellen Wortverarbeitungsannahmen fußen, können derlei Effekte nicht schlüssig erklären, da in ihnen erfolgreiche Wortverarbeitung oft starr an Bewegungsplanung gekoppelt ist, was ein Überspringen des parafovealen Wortes zur Folge hätte. Obwohl Modelle mit paralleler Wortverarbeitung weniger eingeschränkt sind, kann im SWIFT-Modell (Engbert et al., 2002) nur die Verarbeitung fovealer Worte die Sakkadenplanung direkt hemmen. Wir verbinden in dieser Arbeit die Ergebnisse eines Boundary-Experiments (Kapitel 2) mit einem prädiktiven Modellierungsansatz mit dem SWIFT-Modell, in dem wir Mechanismen parafovealer Hemmung in einer Simulationsstudie erkunden (Kapitel 4). Wir konstruieren eine Likelihood-Funktion für das SWIFT-Modell und nutzen die Experimentaldaten in einem Bayesianischen Ansatz zur Parameterschätzung (Kapitel 3 & 4). In den Ergebnissen des Experiments zeigt sich ein substanzieller Frequenzeffekt des Previews auf die Fixationsdauer auf dem Target-Wort, der klar vom Effekt der Preview-Validität unterschieden werden kann. Mittels der Blickbewegungsdaten der Probanden demonstrieren wir die Praktikabilität des gewählten Ansatzes selbst mit nur wenigen freien Parametern, indem wir Statistiken der Probanden mit jenen aus Simulationen auf der Basis geschätzter Parameter vergleichen. Schließlich können wir zeigen, dass SWIFT die lexikalischen Preview-Effekte erzeugen kann, wenn das Modell zusätzlich mit einem Mechanismus parafovealer Inhibition ausgestattet wird. Die Effekte der Preview-Validität wurden hingegen am besten modelliert, wenn eine Möglichkeit zum Abbruch der Sakkadenplanung in Abhängigkeit von der Wortverarbeitung hinzugefügt wurde. In dieser Simulationsstudie wurden lediglich Daten der Kontrollbedingung des Experiments zur Parameterschätzung genutzt, wodurch eine Kreuzvalidierung der Güte der Simulationsdaten ermöglicht wurde. Gleichzeitig wurde die Zahl der freien Parameter erhöht. Hohe Korrelationen der Statistiken verdeutlichen das Potential des Parameterschätzungsansatzes. Zusammengenommen sprechen die Ergebnisse dafür, dass Experimentaldaten mehr zur computationalen Modellierung herangezogen werden sollten, indem Möglichkeiten der Parameterschätzung ausgenutzt werden. KW - reading KW - parafoveal processing KW - predictive modeling KW - boundary paradigm KW - eye tracking KW - MCMC KW - parameter estimation KW - computational modeling KW - interindividual differences KW - lexical processing KW - MCMC KW - computationale Modellierung KW - Eye-Tracking KW - Interindividuelle Unterschiede KW - Lexikalische Verarbeitung KW - Parafoveale Verarbeitung KW - Parameterschätzung KW - Lesen KW - Boundary-Paradigma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-508743 ER - TY - THES A1 - Kotha, Sreeram Reddy T1 - Quantification of uncertainties in seismic ground-motion prediction T1 - Quantifizierung von Unsicherheiten bei der seismischen Bodenbewegungsvorhersage N2 - The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least once in the structure’s design lifetime. A certainty on the predicted ground-motion allows the engineers to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at large, to reduce uncertainties in prediction of design ground-motion levels. In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae relating event, path, and site parameters (predictor variables) to observed ground-motion values at the site (prediction variable). GMPEs are characterized by a parametric median (μ) and a non-parametric variance (σ) of prediction. μ captures the known ground-motion physics i.e., scaling with earthquake rupture properties (event), attenuation with distance from source (region/path), and amplification due to local soil conditions (site); while σ quantifies the natural variability of data that eludes μ. In a broad sense, the GMPE prediction uncertainty is cumulative of 1) uncertainty on estimated regression coefficients (uncertainty on μ,σ_μ), and 2) the inherent natural randomness of data (σ). The extent of μ parametrization, the quantity, and quality of ground-motion data used in a regression, govern the size of its prediction uncertainty: σ_μ and σ. In the first step, I present the impact of μ parametrization on the size of σ_μ and σ. Over-parametrization appears to increase the σ_μ, because of the large number of regression coefficients (in μ) to be estimated with insufficient data. Under-parametrization mitigates σ_μ, but the reduced explanatory strength of μ is reflected in inflated σ. For an optimally parametrized GMPE, a ~10% reduction in σ is attained by discarding the low-quality data from pan-European events with incorrect parametric values (of predictor variables). In case of regions with scarce ground-motion recordings, without under-parametrization, the only way to mitigate σ_μ is to substitute long-term earthquake data at a location with short-term samples of data across several locations – the Ergodic Assumption. However, the price of ergodic assumption is an increased σ, due to the region-to-region and site-to-site differences in ground-motion physics. σ of an ergodic GMPE developed from generic ergodic dataset is much larger than that of non-ergodic GMPEs developed from region- and site-specific non-ergodic subsets - which were too sparse to produce their specific GMPEs. Fortunately, with the dramatic increase in recorded ground-motion data at several sites across Europe and Middle-East, I could quantify the region- and site-specific differences in ground-motion scaling and upgrade the GMPEs with 1) substantially more accurate region- and site-specific μ for sites in Italy and Turkey, and 2) significantly smaller prediction variance σ. The benefit of such enhancements to GMPEs is quite evident in my comparison of PSHA estimates from ergodic versus region- and site-specific GMPEs; where the differences in predicted design ground-motion levels, at several sites in Europe and Middle-Eastern regions, are as large as ~50%. Resolving the ergodic assumption with mixed-effects regressions is feasible when the quantified region- and site-specific effects are physically meaningful, and the non-ergodic subsets (regions and sites) are defined a priori through expert knowledge. In absence of expert definitions, I demonstrate the potential of machine learning techniques in identifying efficient clusters of site-specific non-ergodic subsets, based on latent similarities in their ground-motion data. Clustered site-specific GMPEs bridge the gap between site-specific and fully ergodic GMPEs, with their partially non-ergodic μ and, σ ~15% smaller than the ergodic variance. The methodological refinements to GMPE development produced in this study are applicable to new ground-motion datasets, to further enhance certainty of ground-motion prediction and thereby, seismic hazard assessment. Advanced statistical tools show great potential in improving the predictive capabilities of GMPEs, but the fundamental requirement remains: large quantity of high-quality ground-motion data from several sites for an extended time-period. N2 - Der Zweck der probabilistischen seismischen Gefährdungsbeurteilung (PSHA) auf einer Baustelle besteht darin, den Ingenieuren eine probabilistische Schätzung des Bodenbewegungspegels zu liefern, die mindestens einmal in der Entwurfslebensdauer der Struktur erreicht oder überschritten werden könnte. Eine Gewissheit über die vorhergesagte Bodenbewegung erlaubt es den Ingenieuren, das strukturelle Design sicher zu optimieren und das Risiko von weitreichenden Schäden oder im schlimmsten Fall eines Zusammenbruchs zu minimieren. Es liegt daher im Interesse des Ingenieurwesens, der Versicherung, der Katastrophenvorsorge und der Sicherheit der Gesellschaft insgesamt, die Unsicherheiten bei der Vorhersage der Bodenbewegungsebenen des Entwurfs zu reduzieren. In dieser Studie, beschäftige ich mich mit der Quantifizierung und Reduzierung der Vorhersageunsicherheit von Regressions-basierten Bodenbewegungsvorhersage-Gleichungen (GMPEs). Im Wesentlichen sind GMPEs am besten angepasste Formeln, die Ereignis-, Pfad- und Standortparameter (Prädiktorvariablen) auf beobachtete Bodenbewegungswerte an der Stelle (Vorhersagevariable) beziehen. GMPEs sind gekennzeichnet durch einen parametrischen Median (μ) und eine nichtparametrische Varianz (σ) der Vorhersage. μ erfasst die bekannte Bodenbewegungs-Physik, d. h. Skalierung mit Erdbebenbrucheigenschaften (Ereignis), Dämpfung mit Abstand von der Quelle (Region/Pfad) und Verstärkung aufgrund lokaler Bodenbedingungen (Standort); während σ die natürliche Variabilität von Daten quantifiziert, die sich dem μ entziehen. In einem weiten Sinne ist die GMPE-Vorhersageunsicherheit kumulativ von 1) Unsicherheit bezüglich der geschätzten Regressionskoeffizienten (Unsicherheit auf μ; σ_μ) und 2) der inhärenten natürlichen Zufälligkeit von Daten (σ). Das Ausmaß der μ-Parametrisierung, die Menge und die Qualität der Bodenbewegungsdaten, die in einer Regression verwendet werden, bestimmen die Größe der Vorhersageunsicherheit: σ_μ und σ. Im ersten Schritt stelle ich den Einfluss der μ-Parametrisierung auf die Größe von σ_μ und σ vor. Überparametrisierung scheint die σ_μ zu erhöhen, da die große Anzahl von Regressionskoeffizienten (in μ) mit unzureichenden Daten geschätzt werden muss. Unterparametrisierung mindert σ_μ, aber die reduzierte Erklärungsstärke von μ spiegelt sich in aufgeblähtem σ wider. Für eine optimal parametrisierte GMPE wird eine ~ 10% ige Verringerung von σ erreicht, indem die Daten niedriger Qualität aus paneuropäischen Ereignissen mit inkorrekten Parameterwerten (von Prädiktorvariablen) verworfen werden. In Regionen mit wenigen Bodenbewegungsaufzeichnungen, ohne Unterparametrisierung, besteht die einzige Möglichkeit, σ_μ abzuschwächen, darin, langfristige Erdbebendaten an einem Ort durch kurzzeitige Datenproben an mehreren Orten zu ersetzen - die Ergodische Annahme. Der Preis der ergodischen Annahme ist jedoch aufgrund der Unterschiede in der Bodenbewegungsphysik von Region-zu-Region und von Ort-zu-Ort ein erhöhter σ. σ einer ergodischen GMPE, die aus einem generischen ergodischen Datensatz entwickelt wurde, ist viel größer als die von nicht-ergodischen GMPEs, die aus regions- und ortsspezifischen nicht-ergodischen Teilmengen entwickelt wurden - die zu dünn waren, um ihre spezifischen GMPEs zu erzeugen. Glücklicherweise konnte ich mit dem dramatischen Anstieg der erfassten Bodenbewegungsdaten an mehreren Standorten in Europa und im Nahen Osten die regions- und standortspezifischen Unterschiede bei der Bodenbewegungsskalierung quantifizieren und die GMPE mit 1) wesentlich genauerer Regionalität verbessern, und ortspezifische μ für Standorte in Italien und der Türkei, und 2) signifikant kleinere Vorhersage Varianz σ. Der Vorteil solcher Verbesserungen für GMPEs ist ziemlich offensichtlich in meinem Vergleich von PSHA-Schätzungen von ergodischen gegenüber regions- und ortsspezifischen GMPEs; wo die Unterschiede in den prognostizierten Bodenbewegungsebenen an verschiedenen Standorten in Europa und im Nahen Osten bis zu ~ 50% betragen. Die Lösung der ergodischen Annahme mit gemischten Regressionen ist machbar, wenn die quantifizierten bereichs- und ortsspezifischen Effekte physikalisch sinnvoll sind und die nicht-ergodischen Teilmengen (Regionen und Standorte) a priori durch Expertenwissen definiert werden. In Ermangelung von Expertendefinitionen demonstriere ich das Potential von maschinellen Lerntechniken bei der Identifizierung effizienter Cluster von ortsspezifischen nicht-ergodischen Untergruppen, basierend auf latenten Ähnlichkeiten in ihren Bodenbewegungsdaten. Geclusterte ortsspezifische GMPEs überbrücken die Lücke zwischen ortsspezifischen und vollständig ergodischen GMPEs mit ihrem teilweise nicht-ergodischen μ und ~ 15% kleiner als die ergodische Varianz. Die methodischen Verbesserungen der GMPE-Entwicklung, die in dieser Studie entwickelt wurden, sind auf neue Bodenbewegungsdatensätze anwendbar, um die Sicherheit der Bodenbewegungsvorhersage und damit die Bewertung der seismischen Gefährdung weiter zu verbessern. Fortgeschrittene statistische Werkzeuge zeigen ein großes Potenzial bei der Verbesserung der Vorhersagefähigkeiten von GMPEs, aber die grundlegende Anforderung bleibt: eine große Menge an hochwertigen Bodenbewegungsdaten von mehreren Standorten für einen längeren Zeitraum. KW - ground-motion variability KW - predictive modeling KW - mixed-effect analysis KW - Probabilistic Seismic Hazard and Risk Assessment KW - machine learning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415743 ER -