TY - THES A1 - Kluge, Steven T1 - Integration anorganischer Füllstoffe in Polysulfonmembranen und Auswirkungen auf die Gastransporteigenschaften T1 - Integration of inorganic fillers in polysulfone membranes and effects on the gas transport properties N2 - In der vorliegenden Arbeit wird die Herstellung und Charakterisierung von Mixed-Matrix-Membranen (MMM) für die Gastrennung thematisiert. Dazu wurden verschiedene Füllstoffe genutzt, um in Verbindung mit dem Membranmaterial Polysulfon MMMs herzustellen. Als Füllstoffe wurden 3 aktive und 2 passive Füllstoffe verwendet. Die aktiven Füllstoffe besaßen Porenöffnungen, die in der Lage sind Gase in Abhängigkeit der Molekülgröße zu trennen. Daraus folgt ein höherer idealer Trennfaktor für bestimmte Gaspaare als in Polysulfon selbst. Aufgrund der durch die Poren gebildeten permanenten Kanäle in den aktiven Füllstoffen ergibt sich ein schnellerer Gastransport (Permeabilität) als in Polysulfon. Es handelte sich bei den aktiven Füllstoffen um den Zeolith SAPO-34 und 2 Chargen eines Zeolitic Imidazolate Framework (ZIF) ZIF-8. Die beiden Chargen ZIF-8 unterschieden sich in ihrer spezifischen Oberfläche, was diesen Einfluss speziell in die Untersuchungen zum Gastransport einbeziehen sollte. Bei den passiven Füllstoffen handelte es sich um ein aminofunktionalisiertes Kieselgel und unporöse (dichte) Glaskügelchen. Das Kieselgel besaß Poren, die zu groß waren, um Gase effektiv zu trennen. Die Glaskügelchen konnten keine Gastrennung ermöglichen, da sie keine Poren besaßen. Aus der Literatur ist bekannt, dass die Einbettung von Füllstoffen oft zu Defekten in MMMs führt. Ein Ziel dieser Arbeit war es daher die Einbettung zu optimieren. Weiterhin sollte der Gastransport in MMMs dieser Arbeit mit dem in einer unbeladenen Polysulfonmembran verglichen werden. Aufgrund des selektiveren Trennverhaltens der aktiven Füllstoffe im Vergleich zum Membranmaterial, sollte mit der Einbettung aktiver Füllstoffe die Trennleistung der MMMs mit steigender Füllstoffbeladung immer weiter verbessert werden. Um die Eigenschaften der MMMs zu untersuchen, wurden diese mittels Rasterelektronenmikroskop (REM), Gaspermeationsmessungen (GP) und Thermogravimetrischer Analyse gekoppelt mit Massenspektrometrie (TGA-MS) charakterisiert. Untersuchungen am REM konnten eine Verbesserung der Einbettung zeigen, wenn ein polymerer Haftvermittler verwendet wurde. Verglichen wurde die optimierte Einbettung mit der Einbettung ohne Haftvermittler und Ergebnissen aus der Literatur, in der die Verwendung verschiedener Silane als Haftvermittler beschrieben wurde. Trotz der verbesserten Einbettung konnte lediglich bei geringen Beladungen an Füllstoff (10 und 20 Ma-% bezogen auf das Membranmaterial) eine geringe Steigerung des idealen Trennfaktors in den MMMs gegenüber der unbeladenen Polysulfonmembranen beobachtet werden. Bei höheren Füllstoffbeladungen (30, 40 und 50 Ma-%) war ein deutlicher Anstieg der Permeabilität bei stark sinkendem idealen Trennfaktor zu beobachten. Mit Hilfe von TGA-MS Messungen konnte darüber hinaus festgestellt werden, dass der verwendete Zeolith SAPO-34 durch Wassermoleküle blockierte Porenöffnungen besaß. Das verhinderte den Gastransport im Füllstoff, wodurch die Trennleistung des Füllstoffes nicht ausgenutzt werden konnte. Die Füllstoffe ZIF-8 (chargenunabhängig) und aminofunktionalisiertes Kieselgel wiesen keine blockierten Poren auf. Dennoch zeigte sich in diesen MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften. MMMs mit dichten Glaskügelchen als Füllstoff zeigten dasselbe Gastrenn- und Gastransportverhalten, wie alle MMMs mit den zuvor genannten Füllstoffen. In dieser Arbeit konnte, trotz optimierter Einbettung anorganischer Füllstoffe, für MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften nachgewiesen werden. Vielmehr wurde ein Einfluss der Füllstoffmenge auf die Gastransporteigenschaften in MMMs festgestellt. Die Änderungen der MMMs gegenüber Polysulfon stammen von den Folgen der Einbettung von Füllstoffen in das Matrixpolymer. Durch die Einbettung werden die Eigenschaften des Matrixpolymers ändern, sodass auch der Gastransport beeinflusst wird. Des Weiteren wurde dokumentiert, dass in Abhängigkeit der Füllstoffbeladung die entstehende Membranstruktur beeinflusst wird. Die Beeinflussung war dabei unabhängig von der Füllstoffart. Es wurde eine Korrelation zwischen Füllstoffmenge und veränderter Membranstruktur gefunden. N2 - The present work deals with the production and characterization of mixed matrix membranes (MMM) for gas separation. Various fillers were used to fabricate MMMs in combination with polysulfone as a membrane material. Three active and two passive fillers were used. Active fillers have pore openings that are able to separate gases depending on the size of the molecule. This results in a higher ideal selectivity for certain gas pairs as Polysulfone can reach. Due to the permanent channels formed by pores in the active fillers, there is also a faster gas transport (permeability) than in the membrane material polysulfone. The active fillers were the zeolite SAPO-34 and two batches of a zeolitic imidazolate framework (ZIF) ZIF-8. The two batches ZIF 8 differed in their specific surface area, which should include this influence especially in the investigations on gas transport. Passive fillers were an amino-functionalized silica and non-porous (dense) glass beads. Silica had pores that are too large to effectively separate gases. The glass beads could not enable gas separation because they did not have pores. It is known from literature that embedding of fillers often leads to defects in MMMs. One of the aims of this work was therefore to optimize the embedding of fillers. Furthermore, the gas transport of MMMs was compared with that in a polysulfone membrane without fillers. Due to the more selective separation behavior of the active fillers compared to the membrane material, the embedding of active fillers should improve the separation performance of the MMMs with increasing filler loading. In order to investigate the properties, MMMs were characterized using a scanning electron microscope (SEM), gas permeation measurements (GP) and thermogravimetric analysis coupled with mass spectrometry (TGA-MS). Investigations with SEM were able to show an improvement of embedding of fillers when a polymeric adhesion promoter was used. The optimized embedding was compared with the embedding without adhesion promoter and results from literature in which the use of various silanes as adhesion promoters was described. Despite the improved embedding, a slight increase in ideal selectivity in the MMMs compared to the polysulfone membranes without fillers could only be observed at low loadings of fillers (10 and 20 Ma-%, based on the membrane material). At higher filler loadings (30, 40 and 50 Ma-%), a clear increase in permeability was observed with a sharp decrease in the ideal selectivity. With the aid of TGA-MS measurements, it was possible to determine that the zeolite SAPO-34 had pore openings blocked by water molecules. This prevented the gas transport in the filler, so that the separating capacity of the filler could not be used. ZIF 8 (batch-independent) and amino-functionalized silica did not show any blocked pores. Nevertheless, there was no improvement in gas separation or gas transport properties in MMMs. MMMs with dense glass beads as filler showed the same gas separation and gas transport behavior as all MMMs with the aforementioned fillers. In this work, despite the optimized embedding of inorganic fillers for MMMs, no improvement in gas separation or gas transport properties could be demonstrated. Rather, an influence of the amount of filler on the gas transport properties in MMMs was found. The changes in MMMs compared to polysulfone stem from the consequences of embedding fillers in the matrix polymer. The embedding changes the properties of the matrix polymer, so that the gas transport is also influenced. The influence was independent of the type of filler. Furthermore, it was documented that depending on the filler load, the resulting membrane structure is influenced. A correlation between the amount of filler and the altered membrane structure was found. KW - Dissertation KW - Polysulfon KW - Membran KW - Gastrennung KW - Mixed-Matrix-Membran KW - dissertation KW - membrane KW - mixed-matrix-membrane KW - polysulfone Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-532700 ER - TY - THES A1 - Schröder, Henning T1 - Ultrafast electron dynamics in Fe(CO)5 and Cr(CO)6 T1 - Ultraschnelle Elektronendynamik in Fe(CO)5 und Cr(CO)6 N2 - In this thesis, the two prototype catalysts Fe(CO)₅ and Cr(CO)₆ are investigated with time-resolved photoelectron spectroscopy at a high harmonic setup. In both of these metal carbonyls, a UV photon can induce the dissociation of one or more ligands of the complex. The mechanism of the dissociation has been debated over the last decades. The electronic dynamics of the first dissociation occur on the femtosecond timescale. For the experiment, an existing high harmonic setup was moved to a new location, was extended, and characterized. The modified setup can induce dynamics in gas phase samples with photon energies of 1.55eV, 3.10eV, and 4.65eV. The valence electronic structure of the samples can be probed with photon energies between 20eV and 40eV. The temporal resolution is 111fs to 262fs, depending on the combination of the two photon energies. The electronically excited intermediates of the two complexes, as well as of the reaction product Fe(CO)₄, could be observed with photoelectron spectroscopy in the gas phase for the first time. However, photoelectron spectroscopy gives access only to the final ionic states. Corresponding calculations to simulate these spectra are still in development. The peak energies and their evolution in time with respect to the initiation pump pulse have been determined, these peaks have been assigned based on literature data. The spectra of the two complexes show clear differences. The dynamics have been interpreted with the assumption that the motion of peaks in the spectra relates to the movement of the wave packet in the multidimensional energy landscape. The results largely confirm existing models for the reaction pathways. In both metal carbonyls, this pathway involves a direct excitation of the wave packet to a metal-to-ligand charge transfer state and the subsequent crossing to a dissociative ligand field state. The coupling of the electronic dynamics to the nuclear dynamics could explain the slower dissociation in Fe(CO)₅ as compared to Cr(CO)₆. N2 - Diese Dissertation handelt von der Untersuchung der zwei Modell-Katalysatoren Fe(CO)₅ und Cr(CO)₆ mittels zeitaufgelöster Photoelektronen Spektroskopie an einem High Harmonic Setup. In beiden Metallcarbonyl kann die Dissoziation von einem, oder mehreren Liganden durch ein UV Photon ausgelöst werden. Der Dissoziation-Mechanismus wurde in den letzten Jahrzehnten diskutiert. Die Abspaltung des ersten Liganden und die damit verbundenen elektronischen Dynamiken finden auf Zeitskalen von Femtosekunden statt. Für die Durchführung dieses Experiments wurde ein bestehender High Harmonic Setup in ein neues Labor verlegt. Der Aufbau wurde erweitert und charakterisiert. Mit dem modifizierten Aufbau können nun Reaktionen in Gas-Phasen-Proben mit Photonenenergien von 1.55eV, 3.10eV und 4.65eV ausgelöst werden. Dabei kann die Valenz-Elektronen-Struktur mit Photonenenergien zwischen 20eV und 40eV untersucht werden. Die Zeitauflösung liegt im Bereich von 111fs bis 262fs und hängt von der Kombination der zwei Photonenenergien ab. Die beiden Komplexe sowie Fe(CO)₄ konnten in der Gas-Phase zum ersten Mal in elektronisch angeregten Zuständen mittels zeitaufgelöster Photoelektronenspektroskopie beobachtet werden. Im Allgemeinen kann jedoch mit der Photoelektronenspektroskopie nur der ionische Endzustand untersucht werden. Modellrechnungen zu den Spektren und die Entwicklung der dazugehörigen Theorie befinden derzeit noch in der Entwicklungsphase. Die Peaks in den Spektren konnten anhand von Literatur zugeordnet werden. Die Spektren der beiden Komplexe unterscheiden sich deutlich. Zu deren Interpretation wurde die Näherung verwendet, dass die Dynamik der Peaks in den Spektren die Bewegung des Wellenpakets in der multidimensionalen Energielandschaft darstellt. Die neuen Daten bestätigen weitestgehend bestehende Modelle für die Reaktionsmechanismen. Der Reaktionsmechanismus verläuft für beide Metallcarbonyle über eine direkte Anregung des Wellenpakets in einen metal-to-ligand charge transfer Zustand. Von dem angeregten Zustand aus kann das Wellenpaket in den dissoziativen ligand field Zustand wechseln. Dass die Reaktion in Fe(CO)₅ langsamer als in Cr(CO)₆ abläuft, kann durch die Kopplung der Dynamiken von Elektronen und Kernen erklärt werden. KW - dissertation KW - Dissertation KW - photo electron spectroscopy KW - physical chemistry KW - molecular dynamics KW - high harmonic generation KW - iron pentacarbonyl KW - chromium hexacarbonyl KW - metal carbonyls KW - ultrafast KW - dynamics KW - Photoelektronen KW - Spektroskopie KW - Moleküldynamik KW - high harmonic KW - Eisenpentacarbonyl KW - Chromhexacarbonyl KW - Photodissoziation KW - photodissociation KW - ligand KW - bond Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94589 ER -