TY - THES A1 - Spooner, Cameron T1 - How does lithospheric configuration relate to deformation in the Alpine region? T1 - Was ist der Zusammenhang zwischen der lithosphärischen Zusammensetzung der Alpen, ihrer Vorländer und deren Deformation? N2 - Forming as a result of the collision between the Adriatic and European plates, the Alpine orogen exhibits significant lithospheric heterogeneity due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited features from preceeding orogenies. This implies that the thermal and rheological configuration of the lithosphere also varies significantly throughout the region. Lithology and temperature/pressure conditions exert a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone, which can be regarded as the lower bound to the seismogenic zone. Therefore, they influence the spatial distribution of seismicity within a lithospheric plate. In light of this, accurately constrained geophysical models of the heterogeneous Alpine lithospheric configuration, are crucial in describing regional deformation patterns. However, despite the amount of research focussing on the area, different hypotheses still exist regarding the present-day lithospheric state and how it might relate to the present-day seismicity distribution. This dissertaion seeks to constrain the Alpine lithospheric configuration through a fully 3D integrated modelling workflow, that utilises multiple geophysical techniques and integrates from all available data sources. The aim is therefore to shed light on how lithospheric heterogeneity may play a role in influencing the heterogeneous patterns of seismicity distribution observed within the region. This was accomplished through the generation of: (i) 3D seismically constrained, structural and density models of the lithosphere, that were adjusted to match the observed gravity field; (ii) 3D models of the lithospheric steady state thermal field, that were adjusted to match observed wellbore temperatures; and (iii) 3D rheological models of long term lithospheric strength, with the results of each step used as input for the following steps. Results indicate that the highest strength within the crust (~ 1 GPa) and upper mantle (> 2 GPa), are shown to occur at temperatures characteristic for specific phase transitions (more felsic crust: 200 – 400 °C; more mafic crust and upper lithospheric mantle: ~600 °C) with almost all seismicity occurring in these regions. However, inherited lithospheric heterogeneity was found to significantly influence this, with seismicity in the thinner and more mafic Adriatic crust (~22.5 km, 2800 kg m−3, 1.30E-06 W m-3) occuring to higher temperatures (~600 °C) than in the thicker and more felsic European crust (~27.5 km, 2750 kg m−3, 1.3–2.6E-06 W m-3, ~450 °C). Correlation between seismicity in the orogen forelands and lithospheric strength, also show different trends, reflecting their different tectonic settings. As such, events in the plate boundary setting of the southern foreland correlate with the integrated lithospheric strength, occurring mainly in the weaker lithosphere surrounding the strong Adriatic indenter. Events in the intraplate setting of the northern foreland, instead correlate with crustal strength, mainly occurring in the weaker and warmer crust beneath the Upper Rhine Graben. Therefore, not only do the findings presented in this work represent a state of the art understanding of the lithospheric configuration beneath the Alps and their forelands, but also a significant improvement on the features known to significantly influence the occurrence of seismicity within the region. This highlights the importance of considering lithospheric state in regards to explaining observed patterns of deformation. N2 - Als Resultat der Kollision zwischen der Adriatischen und Europäischen Platte ist das Alpenorogen durch eine ausgeprägte Heterogenität der Lithosphäreneigenschaften gekennzeichnet, die auf die Geschichte der beiden Platten, ihre Interaktion, Wechselwirkungen mit anderen kontinentalen und ozeanischen Blöcken der Region und strukturell vererbte Merkmale aus früheren Orogenesen zurückzuführen sind. Entsprechend ist zu erwarten, dass die thermische und rheologische Konfiguration der Lithosphäre ebenfalls grundlegend innerhalb der Region variiert. Lithologie und Temperatur-/Druckbedingungen steuern maßgeblich die Festigkeit der Lithosphäre indem thermisch aktiviertes Kriechen die Tiefenlage der spröd-duktilen Übergangszone – die sogenannte brittle-ductile transition (BDT) bestimmt. Diese Tiefenlage kann als untere Grenze der seismogenen Zone betrachtet werden kann, weshalb sie die räumliche Verteilung der Seismizität in der Lithosphärenplatte entscheidend beeinflusst. Trotz der langjährigen und umfangreichen Forschung zur Dynamik und Struktur der Alpen gibt es immer noch verschiedene Hypothesen zum heutigen physikalischen Zustand des Systems und dazu, wie dieser mit der Verteilung und dem Auftreten von Seismizität zusammenhängt. Diese Dissertation hat das Ziel, die Lithosphärenkonfiguration der Alpen zu beschreiben und Zusammenhänge zwischen der Verteilung lithosphärischer Eigenschaften und Deformation, insbesondere der Verteilung der Seismizität abzuleiten. Dies wird durch einen integrierten Modellierungsansatz erreicht, mit dem verfügbare geophysikalische Beobachtungen in 3D Modellen zusammengeführt werden, die die heterogene lithosphärische Konfiguration abbilden. Dazu wird (1) ein mit geologischen, seismischen und gravimetrischen Daten konsistentes 3D-Dichtemodell erzeugt und genutzt, um Lithologien abzuleiten, (2) deren Konsequenzen für das dreidimensionale stationäre thermische Feld zu berechnen und, basierend darauf, schließlich (3) die räumliche Variation der Lithosphärenrheologie zu bestimmen. Diese räumliche Variation der rheologischen Eigenschaften wurde schließlich in Beziehung zur Verteilung der auftretenden Seismizität gesetzt. Die Ergebnisse zeigen, dass die größte Festigkeit innerhalb der Kruste (~1 GPa) und im oberen Mantel (> 2 GPa) oberhalb der Bereiche auftritt, wo Temperaturbedingte Phasenübergänge zu erwarten sind. Für die felsische Kruste umfasst dies den Temperaturbereich bis etwa 400° C, für die mafische Kruste und den lithospärischen Mantel bis etwa 600°, wobei Seismizität jeweils oberhalb dieser Temperaturen auftritt. Zusätzlich wurden Hinweise gefunden, dass diese Festigkeitsverteilung auf vererbte Lithosphäreneigenschaften zurückzuführen ist: so tritt seismische Aktivität in der dünneren und mafischen Adria Kruste (~22,5 km, 2.800 kg m-3, 1.30E -06 W m-3) bei höheren Temperatur (~600° C) auf als in der dickeren und eher felsischen europäischen Kruste (~27.5 km, 2750 kg m−3, 1.3–2.6E-06 W m-3, ~450 °C). Die Beziehung zwischen seismischer Aktivität und Lithosphärenfestigkeit im Bereich der Vorländer zeigt ebenfalls unterschiedliche Trends, die verschiedenene tektonische Randbedingungen wiederspiegeln. Während im Plattenrandsetting des südlichen Vorlands Seismizität in der rheologisch weicheren Lithosphäre in der Umrandung des adriatischen Indentors auftritt, korreliert die auftretende Seismizität im Intraplattensetting des nördlichen Vorlands räumlich mit wärmeren und rheologisch schwächeren Domänen im Bereich des Oberrheingrabens. Somit liefern die Ergebnisse in dieser Arbeit nicht nur ein verbessertes Verständnis der Lithosphärenkonfiguration der Alpen und ihrer Vorländer , sondern auch einen bedeutenden Fortschritt dazu, welche Faktoren Seismizität innerhalb der Region beeinflussen können. Sie zeigen, dass es wichtig ist, die Lithosphärenkonfiguration zu kennen und sie zur auftretenden Deformation in Beziehung zu setzen. KW - Gravity KW - Thermal KW - Rheology KW - Model KW - Alps KW - Alpen KW - Schwerkraft KW - Modell KW - Rheologie KW - Thermisch Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516442 ER - TY - THES A1 - Wiedmer, Petra T1 - Geschlechtsspezifische Körpergewichtsregulation bei Mäusen :Untersuchungen zur Set-point-Theorie der Körpermasse N2 - Entsprechend der sogenannten Set-point-Theorie besitzt jeder Mensch eine individuell festgelegte Körpermasse, die über große Zeiträume konstant gehalten und gegen Abweichungen verteidigt wird. Es wird angenommen, dass der Körper auf noch unbekannte Weise Änderungen in der Körpermasse per se wahrnimmt und daraufhin Mechanismen aktiviert, die zur Regenerierung der ursprünglichen Masse führen. In dieser Arbeit wurde die Hypothese getestet, dass eine künstliche Erhöhung der Körpermasse zu einer kompensatorischen Reduktion in der Körpermasse führt, um das Ausgangsgewicht wieder zu regenerieren. Die Körpermasse von männlichen und weiblichen Mäusen wurde akut durch die Implantation von Gewichten mit einer Masse von 10% der aktuellen Körpermasse in die Bauchhöhle erhöht. Bei Gültigkeit der Set-point-Theorie sollte die Körpermassereduktion der Masse des zusätzlichen Gewichtsimplantats entsprechen. Die Mäuse reagierten auf die künstlich erhöhte Körpermasse geschlechtsspezifisch. Männchen zeigten eine partielle Reduktion in der Körpermasse. Weibchen zeigten langfristig jedoch keine Änderungen in der Körpermasse. Die Reduktion der Körpermasse erfolgte bei den Männchen durch eine Abnahme in der Fettmasse. Die fettfreie Masse war in beiden Geschlechtern nicht verändert. Änderungen in der Körpermasse wurden vor allem durch Änderungen in der Energieaufnahme hervorgerufen. Ein Einfluss des Energieumsatzes auf Änderungen in der Körpermasse konnte nicht nachgewiesen werden. Die Regulation der Körpermasse entsprechend eines massespezifischen Set-points konnte partiell für die Männchen gezeigt werden. Bei den Männchen könnte daher die Wahrnehmung der Körpermasse in die Regulation der Körpermasse teilweise integriert sein. Weibchen verminderten ihre Körpermasse dagegen trotz der künstlichen Körpermasseerhöhung nicht. Das führte zur Bewahrung der Energiereserven und spricht eher für die Regulation der Körpermasse entsprechend des notwendigen Energiebedarfs im Vergleich zu Änderungen in der Körpermasse per se. Diese Ergebnisse zeigen, dass die Regulation der Körpermasse geschlechtsspezifischen Mechanismen unterliegt. Dementsprechend sind auch geschlechtsspezifische Ansätze zur Therapie von Übergewicht und Adipositas notwendig. N2 - The set-point theory of body mass assumes that humans possess an individually determined body mass which is maintained over long periods and which is defended against deviations. It is supposed that the body can perceive changes in body mass per se, this process leading to activation of mechanisms aiming at regeneration of initial body mass. Here the following hypothesis was tested: An artificial increase in body weight leads to a compensatory reduction in body mass in order to regenerate initial body weight. Body mass of male and female mice was acutely increased by implanting weight loads into the abdominal cavity. Additional weights corresponded to 10% of initial body mass. According to the set-point theory we expected the mice to decrease body mass to the extend of the additional weight. A gender-specific response was observed. Males showed a partially reduced body mass. In contrast, females did not show body mass changes in the long-term. Males reduced their body mass at the expense of fat mass. Fat free mass was unchanged in both genders. Changes in body mass were mainly caused by changes in energy intake. An impact of energy expenditure on body mass changes could not be demonstrated. Body mass regulation according to a mass-specific set-point could be partially shown for males. Therefore, in males perception of body mass could be partially integrated in the regulation of body weight. Females did not decrease their body mass despite artificially increased body mass pointing to preservation of their energy depots. This argues for regulation of body mass according to needed energy requirements rather than according to changes in body mass per se. These results show that body mass regulation underlies gender-specific mechanisms. Accordingly, gender-specific approaches are needed for treating overweight and obesity. T2 - Geschlechtsspezifische Körpergewichtsregulation bei Mäusen : Untersuchungen zur Set-point-Theorie der Körpermasse KW - Körpermasse KW - Körpergewicht KW - Set-Point KW - Geschlecht KW - Energiestoffwechsel KW - Körperzusammensetzung KW - Schwerkraft KW - Ponderostat KW - body mass KW - body weight KW - set-point KW - gender KW - energy metabolism KW - body composition KW - gravity KW - ponderostat Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001733 ER -