TY - THES A1 - Najafi, Pejman T1 - Leveraging data science & engineering for advanced security operations T1 - Der Einsatz von Data Science & Engineering für fortschrittliche Security Operations N2 - The Security Operations Center (SOC) represents a specialized unit responsible for managing security within enterprises. To aid in its responsibilities, the SOC relies heavily on a Security Information and Event Management (SIEM) system that functions as a centralized repository for all security-related data, providing a comprehensive view of the organization's security posture. Due to the ability to offer such insights, SIEMS are considered indispensable tools facilitating SOC functions, such as monitoring, threat detection, and incident response. Despite advancements in big data architectures and analytics, most SIEMs fall short of keeping pace. Architecturally, they function merely as log search engines, lacking the support for distributed large-scale analytics. Analytically, they rely on rule-based correlation, neglecting the adoption of more advanced data science and machine learning techniques. This thesis first proposes a blueprint for next-generation SIEM systems that emphasize distributed processing and multi-layered storage to enable data mining at a big data scale. Next, with the architectural support, it introduces two data mining approaches for advanced threat detection as part of SOC operations. First, a novel graph mining technique that formulates threat detection within the SIEM system as a large-scale graph mining and inference problem, built on the principles of guilt-by-association and exempt-by-reputation. The approach entails the construction of a Heterogeneous Information Network (HIN) that models shared characteristics and associations among entities extracted from SIEM-related events/logs. Thereon, a novel graph-based inference algorithm is used to infer a node's maliciousness score based on its associations with other entities in the HIN. Second, an innovative outlier detection technique that imitates a SOC analyst's reasoning process to find anomalies/outliers. The approach emphasizes explainability and simplicity, achieved by combining the output of simple context-aware univariate submodels that calculate an outlier score for each entry. Both approaches were tested in academic and real-world settings, demonstrating high performance when compared to other algorithms as well as practicality alongside a large enterprise's SIEM system. This thesis establishes the foundation for next-generation SIEM systems that can enhance today's SOCs and facilitate the transition from human-centric to data-driven security operations. N2 - In einem Security Operations Center (SOC) werden alle sicherheitsrelevanten Prozesse, Daten und Personen einer Organisation zusammengefasst. Das Herzstück des SOCs ist ein Security Information and Event Management (SIEM)-System, welches als zentraler Speicher aller sicherheitsrelevanten Daten fungiert und einen Überblick über die Sicherheitslage einer Organisation geben kann. SIEM-Systeme sind unverzichtbare Werkzeuge für viele SOC-Funktionen wie Monitoring, Threat Detection und Incident Response. Trotz der Fortschritte bei Big-Data-Architekturen und -Analysen können die meisten SIEMs nicht mithalten. Sie fungieren nur als Protokollsuchmaschine und unterstützen keine verteilte Data Mining und Machine Learning. In dieser Arbeit wird zunächst eine Blaupause für die nächste Generation von SIEM-Systemen vorgestellt, welche Daten verteilt, verarbeitet und in mehreren Schichten speichert, damit auch Data Mining im großen Stil zu ermöglichen. Zudem werden zwei Data Mining-Ansätze vorgeschlagen, mit denen auch anspruchsvolle Bedrohungen erkannt werden können. Der erste Ansatz ist eine neue Graph-Mining-Technik, bei der SIEM-Daten als Graph strukturiert werden und Reputationsinferenz mithilfe der Prinzipien guiltby-association (Kontaktschuld) und exempt-by-reputation (Reputationsbefreiung) implementiert wird. Der Ansatz nutzt ein heterogenes Informationsnetzwerk (HIN), welches gemeinsame Eigenschaften und Assoziationen zwischen Entitäten aus Event Logs verknüpft. Des Weiteren ermöglicht ein neuer Inferenzalgorithmus die Bestimmung der Schädlichkeit eines Kontos anhand seiner Verbindungen zu anderen Entitäten im HIN. Der zweite Ansatz ist eine innovative Methode zur Erkennung von Ausreißern, die den Entscheidungsprozess eines SOC-Analysten imitiert. Diese Methode ist besonders einfach und interpretierbar, da sie einzelne univariate Teilmodelle kombiniert, die sich jeweils auf eine kontextualisierte Eigenschaft einer Entität beziehen. Beide Ansätze wurden sowohl akademisch als auch in der Praxis getestet und haben im Vergleich mit anderen Methoden auch in großen Unternehmen eine hohe Qualität bewiesen. Diese Arbeit bildet die Grundlage für die nächste Generation von SIEM-Systemen, welche den Übergang von einer personalzentrischen zu einer datenzentrischen Perspektive auf SOCs ermöglichen. KW - cybersecurity KW - endpoint security KW - threat detection KW - intrusion detection KW - apt KW - advanced threats KW - advanced persistent threat KW - zero-day KW - security analytics KW - data-driven KW - data mining KW - data science KW - anomaly detection KW - outlier detection KW - graph mining KW - graph inference KW - machine learning KW - Advanced Persistent Threats KW - fortschrittliche Angriffe KW - Anomalieerkennung KW - APT KW - Cyber-Sicherheit KW - Data-Mining KW - Data-Science KW - datengetrieben KW - Endpunktsicherheit KW - Graphableitung KW - Graph-Mining KW - Einbruchserkennung KW - Machine-Learning KW - Ausreißererkennung KW - Sicherheitsanalyse KW - Bedrohungserkennung KW - 0-day Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-612257 ER -