TY - JOUR A1 - Burkart, Michael A1 - Alsleben, Katja A1 - Lachmuth, Susanne A1 - Schumacher, Juliane A1 - Hofmann, Ralf A1 - Jeltsch, Florian A1 - Schurr, Frank Martin T1 - Recruitment requirements of the rare and threatened Juncus atratus N2 - The long-term persistence of populations and species depends on the successful recruitment of individuals. The generative recruitment of plants may be limited by a lack of suitable germination and establishment conditions. Establishment limitation may especially be caused by the competitive effect of surrounding dense vegetation, which is believed to restrict the recruitment success of many plant species to small open patches ('safe sites'). We conducted experiments to clarify the roles of germination and seedling establishment as limiting processes in the recruitment of Juncus atratus Krock., a rare and threatened herbaceous perennial river corridor plant in Central Europe. Light intensity had a positive effect on germination. However, some seedlings emerged even in total darkness and the germination rate at 1% light intensity was more than half of that at 60% light intensity. Seedling establishment in the field after 10 weeks was 30% on bare ground, but it was close to zero in grassland. Establishment in the growth chamber after 8 weeks was close to 75% for seedlings that germinated underwater, but only about 35% for seedlings that germinated afloat. Furthermore, establishment decreased with flooding duration on bare ground, but increased with flooding duration in grassland. These data indicate that establishment, rather than germination, is a critical life stage in Central European populations off. atratus. They furthermore indicate that the competition of surrounding vegetation for water limits seedling establishment under field conditions without flooding, largely restricting establishment success to bare ground habitats. In contrast, grassland is more suitable for the recruitment off. atratus than bare ground under prolonged flooding. Grassland may facilitate the establishment off. atratus seedlings during long- lasting floods by supplying oxygen to the soil through aerenchyma. The shift from competition to facilitation in grassland occurred after 30 days of flooding, i.e. within the ontogeny of individual plants. The specific recruitment requirements off. arrows may be a main cause of its rarity in modern Central Europe. In order to prevent regional extinction off. atratus, we suggest maintaining or re-establishing natural hydrodynamics in the species' habitats. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/03672530 U6 - https://doi.org/10.1016/j.flora.2009.08.003 SN - 0367-2530 ER - TY - JOUR A1 - Lachmuth, Susanne A1 - Henrichmann, Colette A1 - Horn, Juliane A1 - Pagel, Jörn A1 - Schurr, Frank M. T1 - Neighbourhood effects on plant reproduction BT - an experimental-analytical framework and its application to the invasive Senecio inaequidens JF - The journal of ecology N2 - Density dependence is of fundamental importance for population and range dynamics. Density-dependent reproduction of plants arises from competitive and facilitative plant-plant interactions that can be pollination independent or pollination mediated. In small and sparse populations, conspecific density dependence often turns from negative to positive and causes Allee effects. Reproduction may also increase with heterospecific density (community-level Allee effect), but the underlying mechanisms are poorly understood and the consequences for community dynamics can be complex. Allee effects have crucial consequences for the conservation of declining species, but also the dynamics of range edge populations. In invasive species, Allee effects may slow or stop range expansion. Observational studies in natural plant communities cannot distinguish whether reproduction is limited by pollination-mediated interactions among plants or by other neighbourhood effects (e.g. competition for abiotic resources). Even experimental pollen supply cannot distinguish whether variation in reproduction is caused by direct density effects or by plant traits correlated with density. Finally, it is unknown over which spatial scales pollination-mediated interactions occur. To circumvent these problems, we introduce a comprehensive experimental and analytical framework which simultaneously (1) manipulates pollen availability and quality by hand pollination and pollinator exclusion, (2) manipulates neighbourhoods by transplanting target plants, and (3) analyses the effects of con- and heterospecific neighbourhoods on reproduction with spatially explicit trait-based neighbourhood models. Synthesis. By manipulating both pollen availability and target plant locations within neighbourhoods, we can comprehensively analyse spatially explicit density dependence of plant reproduction. This experimental approach enhances our ability to understand the dynamics of sparse populations and of species geographical ranges. KW - Allee effect KW - biological invasion KW - competition KW - density dependence KW - facilitation KW - plant-plant interactions KW - pollination KW - reproductive success KW - spatially explicit model KW - trait-based neighbourhood model Y1 - 2017 U6 - https://doi.org/10.1111/1365-2745.12816 SN - 0022-0477 SN - 1365-2745 VL - 106 IS - 2 SP - 761 EP - 773 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Lachmuth, Susanne A1 - Durka, Walter A1 - Schurr, Frank Martin T1 - Differentiation of reproductive and competitive ability in the invaded range of Senecio inaequidens the role of genetic Allee effects, adaptive and nonadaptive evolution JF - New phytologist : international journal of plant science N2 - Genetic differentiation in the competitive and reproductive ability of invading populations can result from genetic Allee effects or r/K selection at the local or range-wide scale. However, the neutral relatedness of populations may either mask or falsely suggest adaptation and genetic Allee effects. In a common-garden experiment, we investigated the competitive and reproductive ability of invasive Senecio inaequidens populations that vary in neutral genetic diversity, population age and field vegetation cover. To account for population relatedness, we analysed the experimental results with 'animal models' adopted from quantitative genetics. Consistent with adaptive r/K differentiation at local scales, we found that genotypes from low-competition environments invest more in reproduction and are more sensitive to competition. By contrast, apparent effects of large-scale r/K differentiation and apparent genetic Allee effects can largely be explained by neutral population relatedness. Invading populations should not be treated as homogeneous groups, as they may adapt quickly to small-scale environmental variation in the invaded range. Furthermore, neutral population differentiation may strongly influence invasion dynamics and should be accounted for in analyses of common-garden experiments. KW - animal models KW - biological invasions KW - genetic Allee effects KW - interspecific competition KW - life history evolution KW - nonadaptive evolution KW - r and K selection KW - reproduction Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03808.x SN - 0028-646X VL - 192 IS - 2 SP - 529 EP - 541 PB - Wiley-Blackwell CY - Malden ER -