TY - JOUR A1 - Poeschke, Patrick A1 - Sokolov, Igor M. A1 - Nepomnyashchy, Alexander A. A1 - Zaks, Michael A. T1 - Anomalous transport in cellular flows: The role of initial conditions and aging JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider the diffusion-advection problem in two simple cellular flow models ( often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.94.032128 SN - 2470-0045 SN - 2470-0053 VL - 94 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sandev, Trifce A1 - Sokolov, Igor M. A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Beyond monofractional kinetics JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved. KW - Distributed order diffusion-wave equations KW - Complete Bernstein function KW - Completely monotone function Y1 - 2017 U6 - https://doi.org/10.1016/j.chaos.2017.05.001 SN - 0960-0779 SN - 1873-2887 VL - 102 SP - 210 EP - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Seno, Flavio A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities JF - Physical review : X, Expanding access N2 - A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevX.7.021002 SN - 2160-3308 VL - 7 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated diffusion on a planar surface full solution JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider the effective surface motion of a particle that intermittently unbinds from a planar surface and performs bulk excursions. Based on a random-walk approach, we derive the diffusion equations for surface and bulk diffusion including the surface-bulk coupling. From these exact dynamic equations, we analytically obtain the propagator of the effective surface motion. This approach allows us to deduce a superdiffusive, Cauchy-type behavior on the surface, together with exact cutoffs limiting the Cauchy form. Moreover, we study the long-time dynamics for the surface motion. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevE.86.041101 SN - 1539-3755 VL - 86 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Zaid, I. M. A1 - Lomholt, M. A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit JF - Mathematical modelling of natural phenomena N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. KW - Bulk-mediated diffusion KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2013 U6 - https://doi.org/10.1051/mmnp/20138208 SN - 0973-5348 VL - 8 IS - 2 SP - 114 EP - 126 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Chechkin, Aleksei V. A1 - Zaid, Irwin M. A1 - Lomholt, Michael A. A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Bulk-mediated surface diffusion on a cylinder in the fast exchange limit T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 593 KW - Bulk-mediated diffusion; KW - anomalous diffusion KW - Levy flights KW - stochastic processes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415480 SN - 1866-8372 IS - 593 SP - 114 EP - 126 ER - TY - JOUR A1 - Sposini, Vittoria A1 - Chechkin, Aleksei A1 - Sokolov, Igor M. A1 - Roldan-Vargas, Sandalo T1 - Detecting temporal correlations in hopping dynamics in Lennard-Jones liquids JF - Journal of physics : A, Mathematical and theoretical N2 - Lennard-Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is characterised by the development of a plateau in the mean-squared displacement (MSD) at intermediate times, accompanied by a non-Gaussianity in the displacement distribution identified by exponential tails. As pointed out by some recent works, the non-Gaussianity persists at times beyond the MSD plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting once again the relevance of rare events in such systems. Single-particle motion of glass-forming liquids is usually interpreted as an alternation of rattling within the local cage and cage-escape motion and therefore can be described as a sequence of waiting times and jumps. In this work, by using a simple yet robust algorithm, we extract jumps and waiting times from single-particle trajectories obtained via molecular dynamics simulations. We investigate the presence of correlations between waiting times and find negative correlations, which becomes more and more pronounced when lowering the temperature. KW - glassy systems KW - hopping dynamics KW - jump detection KW - rare events Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac7e0a SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 32 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Chechkin, Aleksei V. A1 - Korabel, Nickolay A1 - Kantz, Holger A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Distributed-order diffusion equations and multifractality: Models and solutions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.92.042117 SN - 1539-3755 SN - 1550-2376 VL - 92 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Inertia triggers nonergodicity of fractional Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024115 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Klett, Kolja A1 - Cherstvy, Andrey G. A1 - Shin, Jaeoh A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments BT - coupled translational and rotational motions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction phi and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on phi, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing phi. We also analyze the relative motion in the dimers, finding that larger phi suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(phi) of translational and rotational motion of the dumbbells an exponential decay with phi for weak and a power-law variation D(phi) proportional to (phi - phi(star))(2.4) for strong crowding is found. A comparison of simulation results with theoretical predictions for D(phi) is discussed and some relevant experimental systems are overviewed. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.064603 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Toenjes, Ralf A1 - Sokolov, Igor M. A1 - Postnikov, E. B. T1 - Non-spectral relaxation in one dimensional Ornstein-Uhlenbeck processes JF - Physical review letters N2 - The relaxation of a dissipative system to its equilibrium state often shows a multiexponential pattern with relaxation rates, which are typically considered to be independent of the initial condition. The rates follow from the spectrum of a Hermitian operator obtained by a similarity transformation of the initial Fokker-Planck operator. However, some initial conditions are mapped by this similarity transformation to functions which growat infinity. These cannot be expanded in terms of the eigenfunctions of a Hermitian operator, and show different relaxation patterns. Considering the exactly solvable examples of Gaussian and generalized Levy Ornstein-Uhlenbeck processes (OUPs) we show that the relaxation rates belong to the Hermitian spectrum only if the initial condition belongs to the domain of attraction of the stable distribution defining the noise. While for an ordinary OUP initial conditions leading to nonspectral relaxation can be considered exotic, for generalized OUPs driven by Levy noise, such initial conditions are the rule. DOI: 10.1103/PhysRevLett.110.150602 Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevLett.110.150602 SN - 0031-9007 VL - 110 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Nonergodicity of reset geometric Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.L012106 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Bodrova, Anna S. A1 - Chechkin, Aleksei V. A1 - Sokolov, Igor M. T1 - Nonrenewal resetting of scaled Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate an intermittent stochastic process in which diffusive motion with a time-dependent diffusion coefficient, D(t)∼tα−1, α>0 (scaled Brownian motion), is stochastically reset to its initial position and starts anew. The resetting follows a renewal process with either an exponential or a power-law distribution of the waiting times between successive renewals. The resetting events, however, do not affect the time dependence of the diffusion coefficient, so that the whole process appears to be a nonrenewal one. We discuss the mean squared displacement of a particle and the probability density function of its positions in this process. We show that scaled Brownian motion with resetting demonstrates rich behavior whose properties essentially depend on the interplay of the parameters of the resetting process and the particle's displacement infree motion. The motion of particles can remain almost unaffected by resetting but can also get slowed down or even be completely suppressed. Especially interesting are the nonstationary situations in which the mean squared displacement stagnates but the distribution of positions does not tend to any steady state. This behavior is compared to the situation [discussed in the companion paper; A. S. Bodrova et al., Phys. Rev. E 100, 012120 (2019)] in which the memory of the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.100.012119 SN - 2470-0045 SN - 2470-0053 VL - 100 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Safdari, Hadiseh A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Thiel, Felix A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Quantifying the non-ergodicity of scaled Brownian motion JF - Journal of physics : A, Mathematical and theoretical N2 - We examine the non-ergodic properties of scaled Brownian motion (SBM), a non-stationary stochastic process with a time dependent diffusivity of the form D(t) similar or equal to t(alpha-1). We compute the ergodicity breaking parameter EB in the entire range of scaling exponents a, both analytically and via extensive computer simulations of the stochastic Langevin equation. We demonstrate that in the limit of long trajectory lengths T and short lag times Delta the EB parameter as function of the scaling exponent a has no divergence at alpha - 1/2 and present the asymptotes for EB in different limits. We generalize the analytical and simulations results for the time averaged and ergodic properties of SBM in the presence of ageing, that is, when the observation of the system starts only a finite time span after its initiation. The approach developed here for the calculation of the higher time averaged moments of the particle displacement can be applied to derive the ergodic properties of other stochastic processes such as fractional Brownian motion. KW - scaled Brownian motion KW - anomalous diffusion KW - ageing Y1 - 2015 U6 - https://doi.org/10.1088/1751-8113/48/37/375002 SN - 1751-8113 SN - 1751-8121 VL - 48 IS - 37 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Sokolov, Igor M. T1 - Random search with resetting BT - a unified renewal approach JF - Physical review letters N2 - We provide a unified renewal approach to the problem of random search for several targets under resetting. This framework does not rely on specific properties of the search process and resetting procedure, allows for simpler derivation of known results, and leads to new ones. Concentrating on minimizing the mean hitting time, we show that resetting at a constant pace is the best possible option if resetting helps at all, and derive the equation for the optimal resetting pace. No resetting may be a better strategy if without resetting the probability of not finding a target decays with time to zero exponentially or faster. We also calculate splitting probabilities between the targets, and define the limits in which these can be manipulated by changing the resetting procedure. We moreover show that the number of moments of the hitting time distribution under resetting is not less than the sum of the numbers of moments of the resetting time distribution and the hitting time distribution without resetting. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevLett.121.050601 SN - 0031-9007 SN - 1079-7114 VL - 121 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Chechkin, Aleksei V. A1 - Sokolov, Igor M. T1 - Relation between generalized diffusion equations and subordination schemes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Generalized (non-Markovian) diffusion equations with different memory kernels and subordination schemes based on random time change in the Brownian diffusion process are popular mathematical tools for description of a variety of non-Fickian diffusion processes in physics, biology, and earth sciences. Some of such processes (notably, the fluid limits of continuous time random walks) allow for either kind of description, but other ones do not. In the present work we discuss the conditions under which a generalized diffusion equation does correspond to a subordination scheme, and the conditions under which a subordination scheme does possess the corresponding generalized diffusion equation. Moreover, we discuss examples of random processes for which only one, or both kinds of description are applicable. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.032133 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes JF - Physical Review Research N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevResearch.4.013161 SN - 2643-1564 VL - 4 SP - 013161-1 EP - 013161-13 PB - American Physical Society CY - College Park, Maryland, United States ET - 1 ER - TY - GEN A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Restoring ergodicity of stochastically reset anomalous-diffusion processes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experiments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP) from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding the existence of moments. Within these general approaches, we derive general analytical results and support them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean reset TAMSDs from ∝ _μ for subdiffusive to ∝ _1 for superdiffusive reset ADPs. The critical condition for a reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1261 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560377 SN - 1866-8372 SP - 013161-1 EP - 013161-13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Bodrova, Anna S. A1 - Chechkin, Aleksei V. A1 - Sokolov, Igor M. T1 - Scaled Brownian motion with renewal resetting JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion coefficient D(t)∼tα−1 with α>0 (scaled Brownian motion) is stochastically reset to its initial position, and starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when the resetting of the coordinate does not affect the diffusion coefficient's time dependence is considered in the other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)]. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal resetting and consider the dependence of the efficiency of search on the parameters of the process. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevE.100.012120 SN - 2470-0045 SN - 2470-0053 VL - 100 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, sigma(t) similar to t(alpha), named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Delta. The proportionality factor between these the two averages of the time series is Delta/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Delta/T << 1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with s (t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.062127 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 6 PB - American Physical Society CY - College Park ER -