TY - GEN A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1197 KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525668 SN - 1866-8372 IS - 7 ER - TY - JOUR A1 - Schulze, Patricia S. C. A1 - Bett, Alexander J. A1 - Bivour, Martin A1 - Caprioglio, Pietro A1 - Gerspacher, Fabian M. A1 - Kabaklı, Özde Ş. A1 - Richter, Armin A1 - Stolterfoht, Martin A1 - Zhang, Qinxin A1 - Neher, Dieter A1 - Hermle, Martin A1 - Hillebrecht, Harald A1 - Glunz, Stefan W. A1 - Goldschmidt, Jan Christoph T1 - 25.1% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber JF - Solar RRL N2 - Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30% tandem efficiency in the near future. KW - heterojunction silicon solar cells KW - interfaces KW - perovskite solar cells KW - tandem solar cells KW - thin films Y1 - 2020 VL - 4 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Lang, Felix T1 - All-perovskite tandems get flexible JF - Nature energy N2 - Flexible all-perovskite tandem photovoltaics open up new opportunities for application compared to rigid devices, yet their performance lags behind. Now, researchers show that molecule-bridged interfaces mitigate charge recombination and crack formation, improving the efficiency and mechanical reliability of flexible devices. Y1 - 2022 U6 - https://doi.org/10.1038/s41560-022-01087-6 SN - 2058-7546 VL - 7 IS - 8 SP - 688 EP - 689 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Amir, Yohai A1 - Paulke, Andreas A1 - Perdigon-Toro, Lorena A1 - Caprioglio, Pietro A1 - Neher, Dieter T1 - Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells JF - Energy & Environmental Science N2 - Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84%. Optimized cells exhibit power conversion efficiencies of above 20% for 6 mm(2) sized pixels and 18.9% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit. Y1 - 2017 U6 - https://doi.org/10.1039/c7ee00899f SN - 1754-5692 SN - 1754-5706 VL - 10 SP - 1530 EP - 1539 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Perdigon-Toro, Lorena A1 - Zhang, Huotian A1 - Markina, Anastaa si A1 - Yuan, Jun A1 - Hosseini, Seyed Mehrdad A1 - Wolff, Christian Michael A1 - Zuo, Guangzheng A1 - Stolterfoht, Martin A1 - Zou, Yingping A1 - Gao, Feng A1 - Andrienko, Denis A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell JF - Advanced materials N2 - Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier. KW - driving force KW - non-fullerene acceptors KW - organic solar cells KW - photocurrent generation Y1 - 2020 U6 - https://doi.org/10.1002/adma.201906763 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 9 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Stolterfoht, Martin A1 - Perdigón-Toro, Lorena A1 - Feuerstein, Markus A1 - Wolff, Christian Michael A1 - Gil-Escrig, Lidon A1 - Bolink, Henk J. A1 - Neher, Dieter A1 - Koster, L. Jan Anton T1 - Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness JF - ACS Applied Energy Materials N2 - Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs. KW - perovskite solar cells KW - transport layers KW - conductivity KW - doping KW - charge transport Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b00856 SN - 2574-0962 VL - 2 IS - 9 SP - 6280 EP - 6287 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Wolff, Christian Michael A1 - Canil, Laura A1 - Rehermann, Carolin A1 - Nguyen, Ngoc Linh A1 - Zu, Fengshuo A1 - Ralaiarisoa, Maryline A1 - Caprioglio, Pietro A1 - Fiedler, Lukas A1 - Stolterfoht, Martin A1 - Kogikoski, Junior, Sergio A1 - Bald, Ilko A1 - Koch, Norbert A1 - Unger, Eva L. A1 - Dittrich, Thomas A1 - Abate, Antonio A1 - Neher, Dieter T1 - Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445−1456) T2 - ACS nano Y1 - 2020 U6 - https://doi.org/10.1021/acsnano.0c08081 SN - 1936-0851 SN - 1936-086X VL - 14 IS - 11 SP - 16156 EP - 16156 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Shoaee, Safa A1 - Armin, Ardalan A1 - Stolterfoht, Martin A1 - Hosseini, Seyed Mehrdad A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Decoding Charge Recombination through Charge Generation in Organic Solar Cells JF - Solar RRL N2 - The in-depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter-related via the kinetics of charge transfer states-being singlet or triplet states. Although high-charge-photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low-mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta-analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field-dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a "spin-related factor" that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge-generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin-related factor. KW - charge generation KW - charge transfers KW - non-Langevin recombination KW - spin-related factors Y1 - 2019 U6 - https://doi.org/10.1002/solr.201900184 SN - 2367-198X VL - 3 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Shoaee, Safa A1 - Armin, Ardalan A1 - Stolterfoht, Martin A1 - Hosseini, Seyed Mehrdad A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Decoding charge recombination through charge generation in organic solar cells T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The in‐depth understanding of charge carrier photogeneration and recombination mechanisms in organic solar cells is still an ongoing effort. In donor:acceptor (bulk) heterojunction organic solar cells, charge photogeneration and recombination are inter‐related via the kinetics of charge transfer states—being singlet or triplet states. Although high‐charge‐photogeneration quantum yields are achieved in many donor:acceptor systems, only very few systems show significantly reduced bimolecular recombination relative to the rate of free carrier encounters, in low‐mobility systems. This is a serious limitation for the industrialization of organic solar cells, in particular when aiming at thick active layers. Herein, a meta‐analysis of the device performance of numerous bulk heterojunction organic solar cells is presented for which field‐dependent photogeneration, charge carrier mobility, and fill factor are determined. Herein, a “spin‐related factor” that is dependent on the ratio of back electron transfer of the triplet charge transfer (CT) states to the decay rate of the singlet CT states is introduced. It is shown that this factor links the recombination reduction factor to charge‐generation efficiency. As a consequence, it is only in the systems with very efficient charge generation and very fast CT dissociation that free carrier recombination is strongly suppressed, regardless of the spin‐related factor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 773 KW - charge generation KW - charge transfers KW - non-Langevin recombination KW - spin-related factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437512 SN - 1866-8372 IS - 773 ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan H. A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Caprioglio, Pietro A1 - Zu, Fengshuo A1 - Wolff, Christian Michael A1 - Prieto, Jose A. Marquez A1 - Stolterfoht, Martin A1 - Becker, Pascal A1 - Koch, Norbert A1 - Unold, Thomas A1 - Rech, Bernd A1 - Albrecht, Steve A1 - Neher, Dieter T1 - High open circuit voltages in pin-type perovskite solar cells through strontium addition JF - Sustainable Energy & Fuels N2 - The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer. Y1 - 2019 U6 - https://doi.org/10.1039/c8se00509e SN - 2398-4902 VL - 3 IS - 2 SP - 550 EP - 563 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Lai, Huagui A1 - Luo, Jincheng A1 - Zwirner, Yannick A1 - Olthof, Selina A1 - Wieczorek, Alexander A1 - Ye, Fangyuan A1 - Jeangros, Quentin A1 - Yin, Xinxing A1 - Akhundova, Fatima A1 - Ma, Tianshu A1 - He, Rui A1 - Kothandaraman, Radha K. A1 - Chin, Xinyu A1 - Gilshtein, Evgeniia A1 - Muller, Andre A1 - Wang, Changlei A1 - Thiesbrummel, Jarla A1 - Siol, Sebastian A1 - Prieto, Jose Marquez A1 - Unold, Thomas A1 - Stolterfoht, Martin A1 - Chen, Cong A1 - Tiwari, Ayodhya N. A1 - Zhao, Dewei A1 - Fu, Fan T1 - High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell JF - Advanced energy materials N2 - Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6% is presented. When integrating into two-terminal flexible tandems, 23.8% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28% all-perovskite tandems grown on the rigid substrate. KW - all-perovskite tandems KW - flexible tandem solar cells KW - perovskite KW - V OC-deficit KW - wide-bandgap Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202202438 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 45 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jiang, Wei A1 - Tao, Chen A1 - Stolterfoht, Martin A1 - Jin, Hui A1 - Stephen, Meera A1 - Lin, Qianqian A1 - Nagiri, Ravi C. R. A1 - Burn, Paul L. A1 - Gentle, Ian R. T1 - Hole-transporting materials for low donor content organic solar cells BT - charge transport and device performance JF - Organic electronics : physics, materials and applications N2 - Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt%) films. It was found that the 6 wt% donor devices generally gave higher performance than devices containing 50 wt% of the donor. KW - photoexcited hole transfer KW - photocurrent generation KW - synthesis KW - hole KW - mobility KW - low donor content KW - Schottky junction Y1 - 2020 U6 - https://doi.org/10.1016/j.orgel.2019.105480 SN - 1566-1199 SN - 1878-5530 VL - 76 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jiang, Wei A1 - Stolterfoht, Martin A1 - Jin, Hui A1 - Burn, Paul L. T1 - Hole-transporting poly(dendrimer)s as electron donors for low donor organic solar cells with efficient charge transport JF - Macromolecules : a publication of the American Chemical Society N2 - Recent work on bulk-heterojunction organic solar cells has shown that photoexcitation of the electron acceptor followed by photoinduced hole transfer can play a significant role in photocurrent generation. To establish a clear understanding of the role of the donor in the photoinduced hole transfer process, we have synthesized a series of triphenylamine-based hole-transporting poly(dendrimer)s with mechanically flexible nonconjugated backbones via ring-opening metathesis polymerization and used them in low donor content solar cells. The poly(dendrimer)s were found to retain the hole transporting properties of the parent dendrimer, with hole mobilities of similar to 10(-3) cm(2)/(V s) for solution processed neat films. However, when blended with [6,6]-phenyl-C-70-butyric acid methyl ester (PC70BM), the best performing poly(dendrimer) was found to form films that had balanced and relatively high hole/electron mobilities of similar to 5 x 10(-4) cm(2) /(V s). In contrast, at the same concentration the parent dendrimer:PC70BM blend was found to have a hole mobility of 4 orders of magnitude less than the electron mobility. The balanced hole and electron mobilities for the 6 wt % poly(dendrimer):PC70BM blend led to an absence of second-order bimolecular recombination losses at the maximum power point and resulted in a fill factor of 0.65 and a PCE 2.1% for the devices, which was almost three times higher than the cells composed of the parent dendrimer:PC70BM blends. Y1 - 2020 U6 - https://doi.org/10.1021/acs.macromol.0c00520 SN - 0024-9297 SN - 1520-5835 VL - 53 IS - 8 SP - 2902 EP - 2911 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Saliba, Michael A1 - Correa-Baena, Juan-Pablo A1 - Wolff, Christian Michael A1 - Stolterfoht, Martin A1 - Phung, Thi Thuy Nga A1 - Albrecht, Steve A1 - Neher, Dieter A1 - Abate, Antonio T1 - How to Make over 20% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures JF - Chemistry of materials : a publication of the American Chemical Society N2 - Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields. Y1 - 2018 U6 - https://doi.org/10.1021/acs.chemmater.8b00136 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 13 SP - 4193 EP - 4201 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1434 KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516622 SN - 1866-8372 IS - 17 ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% JF - Advanced Materials N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - https://doi.org/10.1002/adma.202000080 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 17 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Krückemeier, Lisa A1 - Rau, Uwe A1 - Stolterfoht, Martin A1 - Kirchartz, Thomas T1 - How to report record open-circuit voltages in lead-halide perovskite solar cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Open-circuit voltages of lead-halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open-circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open-circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta-analysis of methods to determine the bandgap and a radiative limit for open-circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1194 KW - Shockley-Queisser model KW - bandgap KW - fill factor losses KW - nonradiative voltage losses KW - photovoltaics KW - radiative limit KW - recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525289 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Krückemeier, Lisa A1 - Rau, Uwe A1 - Stolterfoht, Martin A1 - Kirchartz, Thomas T1 - How to report record open-circuit voltages in lead-halide perovskite solar cells JF - Advanced energy materials N2 - Open-circuit voltages of lead-halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open-circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open-circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta-analysis of methods to determine the bandgap and a radiative limit for open-circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed. KW - bandgap KW - fill factor losses KW - nonradiative voltage losses KW - photovoltaics KW - radiative limit KW - recombination KW - Shockley-Queisser model Y1 - 2019 U6 - https://doi.org/10.1002/aenm.201902573 SN - 1614-6832 SN - 1614-6840 VL - 10 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Shanshan A1 - Stolterfoht, Martin A1 - Armin, Ardalan A1 - Lin, Qianqian A1 - Zu, Fengshuo A1 - Sobus, Jan A1 - Jin, Hui A1 - Koch, Norbert A1 - Meredith, Paul A1 - Burn, Paul L. A1 - Neher, Dieter T1 - Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells JF - ACS applied materials & interfaces N2 - Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage (V-OC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI(3) perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19%. KW - organohalide lead perovskites KW - solar cells KW - surface wetting KW - work function KW - oxygen plasma KW - transport layer Y1 - 2018 U6 - https://doi.org/10.1021/acsami.8b02503 SN - 1944-8244 VL - 10 IS - 25 SP - 21681 EP - 21687 PB - American Chemical Society CY - Washington ER -