TY - JOUR A1 - Marzetz, Vanessa A1 - Koussoroplis, Apostolos-Manuel A1 - Martin-Creuzburg, Dominik A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Linking primary producer diversity and food quality effects on herbivores: A biochemical perspective JF - Scientific reports N2 - Biodiversity can strongly influence trophic interactions. The nutritional quality of prey communities and how it is related to the prey diversity is suspected to be a major driver of biodiversity effects. As consumer growth can be co-limited by the supply of several biochemical components, biochemically diverse prey communities should promote consumer growth. Yet, there is no clear consensus on how prey specific diversity is linked to community biochemical diversity since previous studies have considered only single nutritional quality traits. Here, we demonstrate that phytoplankton biochemical traits (fatty acids and sterols) can to a large extent explain Daphnia magna growth and its apparent dependence on phytoplankton species diversity. We find strong correlative evidence between phytoplankton species diversity, biochemical diversity, and growth. The relationship between species diversity and growth was partially explained by the fact that in many communities Daphnia was co-limited by long chained polyunsaturated fatty acids and sterols, which was driven by different prey taxa. We suggest that biochemical diversity is a good proxy for the presence of high food quality taxa, and a careful consideration of the distribution of the different biochemical traits among species is necessary before concluding about causal links between species diversity and consumer performance. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-11183-3 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Denoux, Clemence A1 - Martin-Creuzburg, Dominik A1 - Koussoroplis, Apostolos-Manuel A1 - Perriere, Fanny A1 - Desvillettes, Christian A1 - Bourdier, Gilles A1 - Bec, Alexandre T1 - Phospholipid-bound eicosapentaenoic acid (EPA) supports higher fecundity than free EPA in Daphnia magna JF - Journal of plankton research N2 - Nutrition bioassays in which polyunsaturated fatty acids (PUFA)-deficient diets were supplemented with free long-chain PUFA (>= C20) consistently revealed positive effects on somatic growth and fecundity of Daphnia. However, free PUFA are hardly available in natural diets. In general, PUFA are bound to other lipids, especially to phospholipids and triglycerides. Here, we evaluate the potential of free and phospholipid-bound dietary eicosapentaenoic acid (EPA) to support somatic growth and fecundity of Daphnia magna. In a growth experiment, supplementation of a C20 PUFA-deficient diet with free or phospholipid-bound EPA improved somatic growth rates of D. magna equally. However, the increase in fecundity was significantly more pronounced when phospholipid-bound EPA was provided. Free and phospholipid-bound EPA were provided in the same concentrations in our experiment, suggesting that the allocation to reproduction-related processes is affected differently by phospholipid-bound PUFA and free PUFA. Our finding stresses the need to consider the distribution of dietary PUFA in different lipid classes to gain a better understanding of how PUFA influence life history traits of Daphnids in the field. KW - Daphnia magna KW - food quality KW - phospholipids KW - polyunsaturated fatty acids KW - reproduction KW - somatic growth KW - trophic interactions Y1 - 2017 U6 - https://doi.org/10.1093/plankt/fbx037 SN - 0142-7873 SN - 1464-3774 VL - 39 SP - 843 EP - 848 PB - Oxford Univ. Press CY - Oxford ER -