TY - JOUR A1 - Ziolkowski, Bartosz A1 - Bleek, Katrin A1 - Twamley, Brendan A1 - Fraser, Kevin J. A1 - Byrne, Robert A1 - Diamond, Dermot A1 - Taubert, Andreas T1 - Magnetic ionogels (MagIGs) based on iron oxide nanoparticles, poly(N-isopropylacrylamide), and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide JF - European journal of inorganic chemistry : a journal of ChemPubSoc Europe N2 - Magnetic ionogels (MagIGs) were prepared from organosilane-coated iron oxide nanoparticles, N-isopropylacrylamide, and the ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide. The ionogels prepared with the silane-modified nanoparticles are more homogeneous than ionogels prepared with unmodified magnetite particles. The silane-modified particles are immobilized in the ionogel and are resistant tonanoparticle leaching. The modified particles also render the ionogels mechanically more stable than the ionogels synthesized with unmodified nanoparticles. The ionogels respond to external permanent magnets and are therefore prototypes of a new soft magnetic actuator. KW - Magnetic properties KW - Nanotechnology KW - Iron KW - Ionic liquids KW - Ionogels Y1 - 2012 U6 - https://doi.org/10.1002/ejic.201200597 SN - 1434-1948 IS - 32 SP - 5245 EP - 5251 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhang, Weiyi A1 - Willa, Christoph A1 - Sun, Jian-Ke A1 - Guterman, Ryan A1 - Taubert, Andreas A1 - Yuan, Jiayin T1 - Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors JF - Polymer : the international journal for the science and technology of polymers N2 - 4-Methyl-1-vinyl-1,2,4-triazolium triiodide ionic liquid and its polymer poly(4-methyl-1-vinyl-1,2,4-triazolium) triiodide were prepared for the first time from their iodide precursors via the reaction of iodide (I-) with elemental iodine (I-2). The change from iodide to triiodide (I-3(-)) was found to introduce particular variations in the physical properties of these two compounds, including lower melting point/glass transition temperature and altered solubility. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, and their electrochemical properties examined in solution and in the solid-state. Compared with their iodide analogues, the triiodide salts exhibited lower electrical impedance and higher current in the cyclic voltammetry. We found that poly(4-methyl-1,2,4-triazolium triiodide) was proven to be a promising solid polymer electrolyte candidate. (C) 2017 Elsevier Ltd. All rights reserved. KW - Poly(ionic liquid) KW - Solid polymer electrolyte KW - Grotthuss mechanism KW - Triiodide "network" Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.07.059 SN - 0032-3861 SN - 1873-2291 VL - 124 SP - 246 EP - 251 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Zehbe, Kerstin A1 - Lange, Alyna A1 - Taubert, Andreas T1 - Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity JF - Energy Fuels N2 - New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology. Y1 - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b03379 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 12 SP - 12885 EP - 12893 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids BT - correlation between structure and mechanical and electrical properties N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 361 KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400607 ER - TY - JOUR A1 - Yuan, Jiayin A1 - ten Brummelhuis, Niels A1 - Junginger, Mathias A1 - Xie, Zailai A1 - Lu, Yan A1 - Taubert, Andreas A1 - Schlaad, Helmut T1 - Diversified applications of chemically modified 1,2-Polybutadiene JF - Macromolecular rapid communications N2 - Commercially available 1,2-PB was transformed into a well-defined reactive intermediate by quantitative bromination. The brominated polymer was used as a polyfunctional macroinitiator for the cationic ring-opening polymerization of 2-ethyl-2-oxazoline to yield a water-soluble brush polymer. Nucleophilic substitution of bromide by 1-methyl imidazole resulted in the formation of polyelectrolyte copolymers consisting of mixed units of imidazolium, bromo, and double bond. These copolymers, which were soluble in water without forming aggregates, were used as stabilizers in the heterophase polymerization of styrene and were also studied for their ionic conducting properties. KW - emulsion polymerization KW - polybutadiene KW - polyelectrolytes KW - polymer modification KW - ring-opening polymerization Y1 - 2011 U6 - https://doi.org/10.1002/marc.201100254 SN - 1022-1336 VL - 32 IS - 15 SP - 1157 EP - 1162 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Xu, Hai-Bing A1 - Gessner, Andre A1 - Kumke, Michael Uwe A1 - Priebe, Magdalena A1 - Fromm, Katharina M. A1 - Taubert, Andreas T1 - A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)(2)] JF - Journal of materials chemistry N2 - Transparent, ion-conducting, luminescent, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], a PtEu2 chromophore, and poly(methylmethacrylate) (PMMA) have been prepared. The thermal stability of the PMMA significantly increases with IL incorporation. In particular, the onset weight loss observed at ca. 229 degrees C for pure PMMA increases to 305 degrees C with IL addition. The ionogel has a high ionic conductivity of 10(-3) S cm(-1) at 373 K and exhibits a strong emission in the red with a long average luminescence decay time of tau = 890 mu s. The resulting material is a new type of soft hybrid material featuring useful thermal, optical, and ion transport properties. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm15862k SN - 0959-9428 VL - 22 IS - 16 SP - 8110 EP - 8116 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xie, Zai-Lai A1 - White, Robin J. A1 - Weber, Jens A1 - Taubert, Andreas A1 - Titirici, Magdalena M. T1 - Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates JF - Journal of materials chemistry N2 - We report on the ionothermal synthesis of porous carbon materials from a variety of carbohydrate precursors (i.e. D-glucose, D-fructose, D-xylose, and starch) using 1-butyl-3-methylimidazolium tetrachloroferrate(III), [Bmim][FeCl(4)] as a reusable solvent and catalyst. The carbon materials derived from these different carbohydrates are similar in terms of particle size and chemical composition, possessing relatively high surface areas from 44 to 155 m(2) g(-1) after ionothermal processing, which can be significantly increased to > 350 m(2) g(-1) by further thermal treatment (e. g. post-carbonization at 750 degrees C). CO(2) and N(2) sorption analysis, combined with Hg intrusion porosimetry, reveals a promising hierarchical pore structuring to these carbon materials. The ionic liquid [Bmim][FeCl(4)] has a triple role: it acts as both a soft template to generate the characterized pore structuring, solvent and as a catalyst resulting in enhanced ionothermal carbon yields. Importantly from a process point of view, the ionic liquid can be successfully recovered and reused. The current work shows that ionothermal synthesis has the potential to be an effective, low cost, and green reusable synthetic route towards sustainable porous carbon materials. Y1 - 2011 U6 - https://doi.org/10.1039/c1jm00013f SN - 0959-9428 VL - 21 IS - 20 SP - 7434 EP - 7442 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Taubert, Andreas T1 - Thermomorphic behavior of the ionic liquids [C(4)mim][FeCl4] and [C(12)mim][FeCl4] JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The iron-containing ionic liquids 1-butyl-3-methylimidazolium tetrachloroferrate(III) [C(4)mim][FeCl4] and 1-dodecyl-3-methylimidazolium tetrachloroferrate(III) [C(12)mim][FeCl4] exhibit a thermally induced demixing with water (thermomorphism). The phase separation temperature varies with IL weight fraction in water and can be tuned between 100 degrees C and room temperature. The reversible lower critical solution temperature (LCST) is only observed at IL weight fractions below ca. 35% in water. UV/Vis, IR, and Raman spectroscopy along with elemental analysis prove that the yellow-brown liquid phase recovered after phase separation is the starting IL [C(4)mim][FeCl4] and [C(12)mim][FeCl4], respectively. Photometry and ICP-OES show that about 40% of iron remains in the water phase upon phase separation. Although the process is thus not very efficient at the moment, the current approach is the first example of an LCST behavior of a metal-containing IL and therefore, although still inefficient, a prototype for catalyst removal or metal extraction. KW - imidazolium KW - ionic liquids KW - phase transitions KW - Raman spectroscopy KW - thermomorphism Y1 - 2011 U6 - https://doi.org/10.1002/cphc.201000808 SN - 1439-4235 VL - 12 IS - 2 SP - 364 EP - 368 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Jelicic, Aleksandra A1 - Wang, Feipeng A1 - Rabu, Pierre A1 - Friedrich, Alwin A1 - Beuermann, Sabine A1 - Taubert, Andreas T1 - Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3- methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] N2 - The iron-containing ionic liquid (IL) 1-butyl-3-methylimidazolium tetrachloroferrate(III) [Bmim][FeCl4] has been used as a building block in the synthesis of transparent, ion-conducting, and paramagnetic ionogels. UV/Vis spectroscopy shows that the coordination around the Fe(III) ion does slightly change upon incorporation of the IL into PMMA. The thermal stability of the PMMA increases significantly with IL incorporation. In particular, the onset weight loss observed at ca. 265 degrees C for pure PMMA is completely suppressed. The ionic conductivity shows a strong temperature dependence and increases with increasing IL weight fractions. The magnetic properties are similar to those reported for the pure IL and are not affected by the incorporation into the PMMA matrix. The resulting ionogel is thus an interesting prototype for soft, flexible, and transparent materials combining the mechanical properties of the matrix with the functionality of the metal-containing IL, such as magnetism. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/jm/index.asp U6 - https://doi.org/10.1039/C0jm01733g SN - 0959-9428 ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal JF - RSC Advances N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. Y1 - 2014 U6 - https://doi.org/10.1039/c4ra05146g SN - 2046-2069 VL - 4 IS - 70 SP - 37423 EP - 37430 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 283 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99427 ER - TY - JOUR A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Taubert, Andreas T1 - DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change JF - Advanced functional materials N2 - Transparent, ion-conducting, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], the dye-IL (DIL) 1-butyl-3-methylimidazolium methyl orange [Bmim][MO], and poly(methylmethacrylate) (PMMA) are prepared. Upon IL incorporation the thermal stability of the PMMA matrix significantly increases from 220 to 280 degrees C. The ionogels have a relatively high ionic conductivity of 10(-4) S cm(-1) at 373 K. Most importantly, the ionogels exhibit a strong and reversible color change when exposed to aqueous or organic solutions containing protons or hydroxide ions. The resulting material is thus a prototype of soft multifunctional matter featuring ionic conductivity, easy processability, response to changes in the environment, and a strong readout signal, the color change, that could be used in optical data storage or environmental sensing. Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201303016 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 19 SP - 2837 EP - 2843 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wojnarowska, Zaneta A1 - Lange, Alyna A1 - Taubert, Andreas A1 - Paluch, Marian T1 - Ion and proton transport in aqueous/nonaqueous acidic tonic liquids for fuel-cell applications-insight from high-pressure dielectric studies JF - ACS applied materials & interfaces / American Chemical Society N2 - The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of T-g have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs. KW - proton hopping KW - dielectric spectroscopy KW - high pressure KW - ion transport KW - acidic ionic liquids Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c06260 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 26 SP - 30614 EP - 30624 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Winter, Alette A1 - Thiel, Kerstin A1 - Zabel, André A1 - Klamroth, Tillmann A1 - Pöppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II) – structure and EPR spectroscopy BT - Part 2: tetrachloridocuprates(II) N2 - We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2− moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2− anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 240 KW - electron-spin resonance KW - liquid-crystal precursors KW - copper(II) halide salts KW - ionic liquid KW - square planar KW - tetrachlorocuprate(II) salts KW - molecular-structure KW - magnetic-properties KW - paramagnetic-resonance KW - temperature phase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95012 SP - 1019 EP - 1030 ER - TY - JOUR A1 - Winter, Alette A1 - Thiel, Kerstin A1 - Zabel, Andre A1 - Klamroth, Tillmann A1 - Poeppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II) JF - New journal of chemistry N2 - We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations. Y1 - 2014 U6 - https://doi.org/10.1039/c3nj01039b SN - 1144-0546 SN - 1369-9261 VL - 38 IS - 3 SP - 1019 EP - 1030 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Vioux, André A1 - Taubert, Andreas T1 - Ionic liquids 2014 and selected papers from ILMAT 2013 BT - Highlighting the ever-growing potential of Ionic Liquids T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1055 KW - electrolytes KW - extraction KW - system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475062 SN - 1866-8372 IS - 1055 ER - TY - INPR A1 - Vioux, Andre A1 - Taubert, Andreas T1 - Ionic liquids 2014 and selected papers from ILMAT 2013: highlighting the ever-growing potential of ionic liquids T2 - International journal of molecular sciences Y1 - 2014 U6 - https://doi.org/10.3390/ijms151222815 SN - 1422-0067 VL - 15 IS - 12 SP - 22815 EP - 22818 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment JF - Applied clay science : an international journal on the application and technology of clays and clay minerals N2 - A class of adsorbents currently receiving growing attention is the clay-polymer nanocomposite (CPN) adsorbents. CPNs effectively treat water by adsorption and flocculation of both inorganic and organic micropollutants from aqueous solutions. Some of these CPNs - when modified with biocides - also have the ability to efficiently remove microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans from water. CPNs are far more easily recovered from aqueous media than neat clay. They also exhibit far better treatment times than either polymer or clay adsorbents. They have higher adsorption capacity and better life cycles compared with clay alone. CPNs therefore show an excellent potential as highly efficient water and waste treatment agents. This article reviews the various CPNs that have been prepared recently and used as adsorbents in the removal of micropollutants (inorganic, organic and biological) from aqueous solutions. A special focus is placed on CPNs that are not only interesting from an academic point of view but also effectively reduce the concentration of micropollutants in water to safe limits and also on new developments bordering on CPN use as water treatment agent that have not yet realized their full potential. (C) 2014 Elsevier B.V. All rights reserved. KW - Clay-polymer nanocomposite - CPN KW - Micropollutants KW - Adsorbent KW - Water treatment KW - Microorganism KW - Desorption Y1 - 2014 U6 - https://doi.org/10.1016/j.clay.2014.06.016 SN - 0169-1317 SN - 1872-9053 VL - 99 SP - 83 EP - 92 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Olu-Owolabi, Bamidele I. A1 - Taubert, Andreas A1 - Omolehin, Elizabeth B. A1 - Adebowale, Kayode O. T1 - SAPK a novel composite resin for water treatment with very high Zn2+, Cd2+, and Pb2+ adsorption capacity JF - Industrial & engineering chemistry research N2 - A new sulfonated aniline-modified poly(vinyl alcohol)/K-feldspar (SAPK) composite was prepared. The cation-exchange capacity of the composite was found to be S times that of neat feldspar. The specific surface area and point of zero charge also changed significantly upon modification, from 15.6 +/- 0.1 m(2)/g and 2.20 (K-feldspar) to 73.6 +/- 0.3 m(2)/g and 1.91 (SAPK). Zn2+, Cd2+, and Pb2+ adsorption was found to be largely independent of pH, and the metal adsorption rate on SAPK was higher than that on neat feldspar. This particularly applies to the initial adsorption rates. The adsorption process involves both film and pore diffusion; film diffusion initially controls the adsorption. The Freundlich and Langmuir models were found to fit metal-ion adsorption on SAPK most accurately. Adsorption on neat feldspar was best fitted with a Langmuir model, indicating the formation of adsorbate monolayers. Both pure feldspar and SAPK showed better selectivity for Pb2+ than for Cd2+ or Zn2+. Y1 - 2013 U6 - https://doi.org/10.1021/ie3024577 SN - 0888-5885 VL - 52 IS - 2 SP - 578 EP - 585 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Nöske, Robert A1 - Weber, Jens A1 - Günter, Christina A1 - Taubert, Andreas T1 - New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water JF - Beilstein journal of nanotechnology N2 - A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between approximate to 150 and 300 m(2)/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 degrees C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. KW - 4-nitrophenol KW - Carica papaya seeds KW - clay KW - E. coli KW - micro/mesoporous KW - nanocomposite KW - water remediation Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.11 SN - 2190-4286 VL - 10 SP - 119 EP - 131 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER -