TY - GEN A1 - Zimmermann, Marc A1 - Stomps, Benjamin René Harald A1 - Schulte-Osseili, Christine A1 - Grigoriev, Dmitry A1 - Ewen, Dirk A1 - Morgan, Andrew A1 - Böker, Alexander T1 - Organic dye anchor peptide conjugates as an advanced coloring agent for polypropylene yarn T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Polypropylene as one of the world's top commodity polymers is also widely used in the textile industry. However, its non-polar nature and partially crystalline structure significantly complicate the process of industrial coloring of polypropylene. Currently, textiles made of polypropylene or with a significant proportion of polypropylene are dyed under quite harsh conditions, including the use of high pressures and temperatures, which makes this process energy intensive. This research presents a three-step synthesis of coloring agents, capable of adhering onto synthetic polypropylene yarns without harsh energy-consuming conditions. This is possible by encapsulation of organic pigments using trimethoxyphenylsilane, introduction of surface double bonds via modification of the silica shell with trimethoxysilylpropylmethacrylate and final attachment of highly adhesive anchor peptides using thiol-ene chemistry. We demonstrate the applicability of this approach by dyeing polypropylene yarns in a simple process under ambient conditions after giving a step-by-step guide for the synthesis of these new dyeing agents. Finally, the successful dyeing of the yarns is visualized, and its practicability is discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1380 KW - anchor peptides KW - organic dye pigments KW - coloring agents KW - polypropylene yarns Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548913 SN - 1866-8372 IS - 1-2 ER - TY - THES A1 - Zimmermann, Marc T1 - Multifunctional patchy silica particles via microcontact printing T1 - Multifunktionale Patchy Silika Partikel mithilfe des Mikrokontaktdruckverfahrens N2 - This research addressed the question, if it is possible to simplify current microcontact printing systems for the production of anisotropic building blocks or patchy particles, by using common chemicals while still maintaining reproducibility, high precision and tunability of the Janus-balance Chapter 2 introduced the microcontact printing materials as well as their defined electrostatic interactions. In particular polydimethylsiloxane stamps, silica particles and high molecular weight polyethylenimine ink were mainly used in this research. All of these components are commercially available in large quantities and affordable, which gives this approach a huge potential for further up-scaling developments. The benefits of polymeric over molecular inks was described including its flexible influence on the printing pressure. With this alteration of the µCP concept, a new method of solvent assisted particle release mechanism enabled the switch from two-dimensional surface modification to three-dimensional structure printing on colloidal silica particles, without changing printing parameters or starting materials. This effect opened the way to use the internal volume of the achieved patches for incorporation of nano additives, introducing additional physical properties into the patches without alteration of the surface chemistry. The success of this system and its achievable range was further investigated in chapter 3 by giving detailed information about patch geometry parameters including diameter, thickness and yield. For this purpose, silica particles in a size range between 1µm and 5µm were printed with different ink concentrations to change the Janus-balance of these single patched particles. A necessary intermediate step, consisting of air-plasma treatment, for the production of trivalent particles using "sandwich" printing was discovered and comparative studies concerning the patch geometry of single and double patched particles were conducted. Additionally, the usage of structured PDMS stamps during printing was described. These results demonstrate the excellent precision of this approach and opens the pathway for even greater accuracy as further parameters can be finely tuned and investigated, e.g. humidity and temperature during stamp loading. The performance of these synthesized anisotropic colloids was further investigated in chapter 4, starting with behaviour studies in alcoholic and aqueous dispersions. Here, the stability of the applied patches was studied in a broad pH range, discovering a release mechanism by disabling the electrostatic bonding between particle surface and polyelectrolyte ink. Furthermore, the absence of strong attractive forces between divalent particles in water was investigated using XPS measurements. These results lead to the conclusion that the transfer of small PDMS oligomers onto the patch surface is shielding charges, preventing colloidal agglomeration. However, based on this knowledge, further patch modifications for particle self-assembly were introduced including physical approaches using magnetic nano additives, chemical patch functionalization with avidin-biotin or the light responsive cyclodextrin-arylazopyrazoles coupling as well as particle surface modification for the synthesis of highly amphiphilic colloids. The successful coupling, its efficiency, stability and behaviour in different solvents were evaluated to find a suitable coupling system for future assembly experiments. Based on these results the possibility of more sophisticated structures by colloidal self-assembly is given. Certain findings needed further analysis to understand their underlying mechanics, including the relatively broad patch diameter distribution and the decreasing patch thickness for smaller silica particles. Mathematical assumptions for both effects are introduced in chapter 5. First, they demonstrate the connection between the naturally occurring particle size distribution and the broadening of the patch diameter, indicating an even higher precision for this µCP approach. Second, explaining the increase of contact area between particle and ink surface due to higher particle packaging, leading to a decrease in printing pressure for smaller particles. These calculations ultimately lead to the development of a new mechanical microcontact printing approach, using centrifugal forces for high pressure control and excellent parallel alignment of printing substrates. First results with this device and the comparison with previously conducted by-hand experiments conclude this research. It furthermore displays the advantages of such a device for future applications using a mechanical printing approach, especially for accessing even smaller nano particles with great precision and excellent yield. In conclusion, this work demonstrates the successful adjustment of the µCP approach using commercially available and affordable silica particles and polyelectrolytes for high flexibility, reduced costs and higher scale-up value. Furthermore, its was possible to increase the modification potential by introducing three-dimensional patches for additional functionalization volume. While keeping a high colloidal stability, different coupling systems showed the self-assembly capabilities of this toolbox for anisotropic particles. N2 - Diese Forschungsarbeit befasste sich mit der Frage, ob es möglich ist, bekannte Mikrokontaktdruckverfahren, zur Herstellung von anisotropen Bausteinen (Patchy Partikel), weiter zu vereinfachen. Dabei sollten gängige Chemikalien verwendet werden ohne einen Verlust in Reproduzierbarkeit, hoher Präzision und Feineinstellung der Janus-Balance zu erleiden. In Kapitel 2 wurden die verwendeten Mikrokontaktdruckmaterialien sowie deren elektrostatische Wechselwirkungen vorgestellt. Insbesondere handelte es sich dabei um Polydimethylsiloxan Stempel, Silikapartikel und hoch molekulare Polyethylenimin Tinte. All diese Produkte sind kommerziel in großen und bezahlbaren Mengen erhältlich. Nicht nur die Vorteile von polymeren Tinten im Gegensatz zu molekularen Tinten wurde beschrieben, sondern auch die hohe Flexibilität dieses Verfahrens bezüglich der verwendeten Druckkraft. Mit dieser Anpassung des Mikrokontaktdrucks, wurde eine neue Methode der Lösungsmittel unterstützten Partikelablösung ermöglicht, mit deren Hilfe ein einfaches Schalten zwischen zwei dimensionaler Oberflächenfunktionalisierung und drei dimensionalem Strukturdrucks möglich war, ohne Druckparameter oder Startchemikalien zu verändern. Dadurch konnte neu erschaffenes internes Volumen verwendet werden um Nanoadditive einzuführen und so zusätzliche physikalische Eigenschaften zu integrieren, ohne die Oberflächenchemie der Patches verändert wurde. Der Erfolg dieses Systems und seine erreichbaren Grenzen wurde gründlichst in Kapitel 3 erforscht, indem detaillierte Geometrieparameter der Patches einschließlich Durchmesser, Dicke und Ausbeute, erworben wurden. Hierfür wurden Silikapartikel in einem Größenbereich von 1µm bis 5µm mit unterschiedlichen Tintenkonzentrationen bedruckt, um Veränderungen erforschen zu können. Ein notwendiger Luftplasma Ätzschritt für die Produktion von trivalenten Partikeln, mit Hilfe des sogenannten ,,Sandwich‘‘-Drucks, wurde erläutert und vergleichende Untersuchen von einfach und zweifach modifizierten Bausteinen wurden durchgeführt. Zusätzlich dazu, wurde die Verwendung von strukturierten Stempel beschrieben. Die Ergebnisse verdeutlichen die exzellente Genauigkeit dieser Methode und öffnet den Weg um eine hoch höhere Präzision zu erreichen da weitere Parametere genau eingestellt und untersucht werden können, z.B. Luftfeuchtigkeit und Temperature während der Stempelbeladung. Die Performance der herstellten anisotropen Partikel wurde in Kapitel 4 mit Verhaltensstudien in alkoholischen und wässrigen Dispersionen getestet. Dabei wurde die Stabilität der Oberflächenfunktionalisierungen in einem breiten pH Bereich untersucht. Dadurch wurde ein Ablösungsmechanismus bei sehr hohen bzw. niedrigen pH-Werten entdeckt, der zur Deaktivierung elektrostatischer Wechselwirkungen zwischen Partikeloberfläche und Polyelektrolyte Tinte führte. Desweitern wurden die Abwesenheit starker Wechselwirkung der divalenten Partikel in Wasser mit Hilfe von XPS untersucht. Das Resultat zeigte, dass der Transfer kleinster PDMS Oligomere auf die Patchoberfläche zu einer Ladungsabschirmung führte. Dadurch konnte Agglomeration verhindert werden. Aufgrund dieser Ergebnisse wurden weitere Modifikationen für Partikelassemblierung durchgeführt. Hierfür wurde die Einführung von magnetischen Nanoadditiven, die Funktionalisierung mit Avidin-Biotin sowie dem Lichtschaltbaren Cyclodextrin-Arylazopyrazol Komplexen und die Partikeloberflächenfunktionalisierung zur Herstellung amphiphiler Teilchen untersucht. Die Effizienz der Kopplung, deren Stabilität sowie das Verhalten in unterschiedlichen Lösungsmittel wurde beschrieben. Basierend auf diesen Ergebnissen können noch anspruchsvollere Strukturen durch kolloidale Selbstassemblierung erzeugt werden. Einige Ergebnisse dieser Arbeit benötigten zusätzlicher Analyse um die zugrundeliegenden Mechaniken verstehen zu können. Dazu gehörte die relative hohe Streuung des Durchmessers für unterschiedliche Partikelsysteme, sowie das Ausdünnen des Patches mit kleineren Silikapartikeln. Mathematische Modelle in Kapitel 5 beschreiben beide Effekte. Dadurch war es möglich einen Zusammenhang zwischen der natürlichen Partikelgrößenverteilung sowie der Verbreitung des Patchdurchmessers festzustellen. Des Weiteren konnte eine Verkleinerung der Druckkraft durch eine Erhöhung der Packungsdichte für kleine Partikel beschrieben werden, wodurch eine Erklärung der Ausdünnung möglich war. All diese Berechnung führten schlussendlich zur Entwicklung eines neuen mechanischen Mikrokontaktdruckverfahrens, welches mit Hilfe von Zentrifugalkräften eine hohe Druckkontrolle und eine exzellente parallele Ausrichtung zwischen den Substraten ermöglicht. Erste Ergebnisse, sowie deren Vergleich mit bisher erhaltenen Resultaten schließen diese Forschung ab. Des Weiteren zeigt es die Vorteile einer solchen Vorrichtung für kommende Applikationen, besonders um noch kleinere Nanopartikel mit einer hohen Präzision modifizieren zu können. Zusammenfassend ist zu sagen, dass diese Forschung die erfolgreiche Anpassung des Mikrokontaktdruckverfahrens mit kommerziell erhältlichen und bezahlbaren Silikapartikeln und Polyelektrolyten demonstriert, um hohe Flexibilität, reduzierte Kosten und ein erweitertes Skalierungspotential zu bieten. Zusätzlich ist es gelungen, die Funktionalisierungsdichte zu erhöhen, indem drei dimensionaler Strukturdruck bisher ungenutztes Volumen schaffen konnte. Während eine hohe kolloidale Stabilität erhalten blieb, ist es gelungen unterschiedliche Kopplungssysteme zu nutzen, um das Selbstorganisationspotential dieser Toolbox für anisotrope Partikel aufzuzeigen. KW - patchy particles KW - microcontact printing KW - silica particles KW - anisotropic colloids KW - polyelectrolytes KW - Patchy Partikel KW - Mikrokontaktdruck KW - Silika Partikel KW - Anisotrope Kolloide KW - Polyelektrolyte Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427731 ER - TY - THES A1 - Zenichowski, Karl T1 - Quantum dynamical study of Si(100) surface-mounted, STM-driven switches at the atomic and molecular scale T1 - Quantendynamische Untersuchung von Si(100) Oberflächen-gebundenen, STM-gesteuerten atomaren und molekularen Schaltern N2 - The aim of this thesis is the quantum dynamical study of two examples of scanning tunneling microscope (STM)-controllable, Si(100)(2x1) surface-mounted switches of atomic and molecular scale. The first example considers the switching of single H-atoms between two dangling-bond chemisorption sites on a Si-dimer of the Si(100) surface (Grey et al., 1996). The second system examines the conformational switching of single 1,5-cyclooctadiene molecules chemisorbed on the Si(100) surface (Nacci et al., 2008). The temporal dynamics are provided by the propagation of the density matrix in time via an according set of equations of motion (EQM). The latter are based on the open-system density matrix theory in Lindblad form. First order perturbation theory is used to evaluate those transition rates between vibrational levels of the system part. In order to account for interactions with the surface phonons, two different dissipative models are used, namely the bilinear, harmonic and the Ohmic bath model. IET-induced vibrational transitions in the system are due to the dipole- and the resonance-mechanism. A single surface approach is used to study the influence of dipole scattering and resonance scattering in the below-threshold regime. Further, a second electronic surface was included to study the resonance-induced switching in the above-threshold regime. Static properties of the adsorbate, e.g., potentials and dipole function and potentials, are obtained from quantum chemistry and used within the established quantum dynamical models. N2 - Die vorliegende Doktorarbeit befasst sich mit kleinsten schaltbaren Einheiten in Form des Moleküls Cyclooctadien (COD) und dem Wasserstoff-Atom, die chemisch fest mit einer Oberfläche aus kristallinem Silizium verbunden sind. Jeder dieser Schalter kann mittels einer winzigen Spitze, eines so genannten Rastertunnelmikroskops (RTM), von atomarem Durchmesser in zwei unterscheidbare und stabile Schaltpositionen gebracht werden. Dabei besteht das Schalten entweder in einer Änderung der Geometrie des molekularen Schalters oder im Brechen und Neu-knüpfen chemischer Bindungen. Dabei ist es entscheidend, dass durch die geringe Grösse dieser Schalter eine hohe Anzahl dieser Schalter auf einer Oberfläche deponiert werden können. Mit der in den Schaltern speicherbaren Informationen an oder aus, 0 oder 1 ließen sich sehr hohe Speicherkapazitäten erreichen. Vor einer Anwendung dieser Art ist es wichtig zunächst ein grundlegendes Verständnis der Schaltprozesse auf der Oberfläche zu gewinnen. Wenn alle wesentlichen Faktoren berücksichtigt wurden und der Mechanismus des Schaltens verstanden ist, kann das Ergebnis des Experiments mit Hilfe eines theoretischen Modells vorhergesagt werden. Für die Handhabbarkeit muss sich das theoretisches Modell auf wesentliche Einflüsse beschränken und diese so einfach wie möglich beschreiben. So wurde die simultane Bewegung der 12 Atome des COD in die Bewegung eines gemittelten Massenpunktes entlang von einer oder von zwei räumlichen Freiheitsgraden übersetzt. Dabei kann der Massenpunkt im klassischen Bild anschaulich als eine rollende Kugel beschrieben werden, die in einer Seite einer Doppelmulde gefangen ist. Die Kugel kann durch äußere Anregung zum Schwingen gebracht werden und schließlich über eine Barriere in die benachbarte Mulde schalten. Nun muss die Schwingung der Kugel gebremst werden, um ein Zurück-Schwingen der Kugel zu verhindern. Die Anregung erfolgt durch elektrische Ladungen die von der Spitze des RTM zur Oberfläche wandern oder durch eine schwingende, d.h. warme Oberfläche. Das Bremsen wird über die elastische Bindung zu einer kalten Oberfläche vermittelt. Um Quanteneffekte wie das Tunneln der Kugel durch die Barriere zu beschreiben wurde die Kugel durch ein Wellenpaket beschrieben und dessen Aufenthaltswahrscheinlichkeit in der Doppelmulde untersucht. Im Fall des Wasserstoffatoms war die experimentelle Prüfung des entworfenen Modells für ein Schalten bei starkem Strom leider nicht möglich. Für das COD Molekül konnte jedoch nicht nur die Übereinstimmung mit den experimentellen Befunden, sondern im Fall des Schaltens in Abhängigkeit der Oberflächentemperatur auch die Vorhersagefähigkeit des Modells unter Beweis gestellt werden. KW - Kerndynamik KW - molekulare Schalter KW - Nanotechnologie KW - STM KW - Oberflächen KW - Quantum dynamics KW - molecular switches KW - nanotechnology KW - STM KW - surfaces Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62156 ER - TY - GEN A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids BT - correlation between structure and mechanical and electrical properties N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 361 KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400607 ER - TY - THES A1 - Zarafshani, Zoya T1 - Chain-end functionalization and modification of polymers using modular chemical reactions T1 - Ketten-Ende Funktionalisierung und Modifikation von Polymeren mittels modulare chemischen Reaktionen N2 - Taking advantage of ATRP and using functionalized initiators, different functionalities were introduced in both α and ω chain-ends of synthetic polymers. These functionalized polymers could then go through modular synthetic pathways such as click cycloaddition (copper-catalyzed or copper-free) or amidation to couple synthetic polymers to other synthetic polymers, biomolecules or silica monoliths. Using this general strategy and designing these co/polymers so that they are thermoresponsive, yet bioinert and biocompatible with adjustable cloud point values (as it is the case in the present thesis), the whole generated system becomes "smart" and potentially applicable in different branches. The applications which were considered in the present thesis were in polymer post-functionalization (in situ functionalization of micellar aggregates with low and high molecular weight molecules), hydrophilic/hydrophobic tuning, chromatography and bioconjugation (enzyme thermoprecipitation and recovery, improvement of enzyme activity). Different α-functionalized co/polymers containing cholesterol moiety, aldehyde, t-Boc protected amine, TMS-protected alkyne and NHS-activated ester were designed and synthesized in this work. N2 - In dieser Arbeit wurden mittels der ATRP Methode sowie durch Benutzung funktioneller Initiatoren verschiedene Funktionalitäten an der α- und ω-Position der synthetischen Polymere (Kettenenden) eingeführt. Diese funktionalisierten Polymere können durch modulare synthetische Methoden wie z.B. die “Klick-Zykloaddition” (kupferkatalysiert oder auch kupferfreie Methoden möglich), Amidierung mit anderen synthetischen Polymeren oder Biomolekülen, oder auch mit Silikatmonolithen gekuppelt werden. Den beschriebenen Strategien folgend und unter Benutzung von thermoresponsiven, bioinerten und biokompartiblen (Co-) Polymeren mit einstellbaren Trübungspunkten können mittels Temperaturänderungen leicht steuerbare, „smarte“ Polymersysteme für verschiedene Anwendungen hergestellt werden. Im Rahmen dieser Arbeit wurden speziell Anwendungen wie die Postfunktionalisierung (in situ Funktionalisierung mizellarer Aggregate mit Molekülen, die sowohl niedrige als auch höhere Molekulargewichte aufweisen), hydrophiles/hydrophobes Tuning von Polymeren, Chromatographie an Polymeren sowie Biokonjugation von Polymeren (Enzymthermoprezipitation und -Gewinnung, Enzymaktivitätsmodifizierung) genauer untersucht. Es wurden verschiedene α-funktionalisierte (Co-)Polymere, die Cholesterol, Aldehyde, t-Boc geschützte Amine, TMS-geschützte Alkine und NHS-aktivierte Ester entwickelt und hergestellt und mittels passender ATRP Initiatoren eingeführt. KW - Atom Transfer Radical Polymerization KW - Klick-Chemie KW - Biokonjugation KW - Funktionalisierung KW - Modifizierung von Polymeren KW - ATRP KW - Click chemistry KW - Bioconjugation KW - Functionalization KW - Polymer Modification Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-59723 ER - TY - GEN A1 - Zamponi, Flavio A1 - Penfold, Thomas J. A1 - Nachtegaal, Maarten A1 - Lübcke, Andrea A1 - Rittmann, Jochen A1 - Milne, Chris J. A1 - Chergui, Majed A1 - van Bokhoven, Jeroen A. T1 - Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy N2 - Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8% expansion of the Au–Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 176 KW - TiO2 nanoparticles KW - diimine-complexes KW - electron-transfer KW - excitation KW - nanoclusters KW - reactivity KW - supported gold KW - surface KW - visible-light KW - water Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74492 SP - 23157 EP - 23163 ER - TY - GEN A1 - Zabel, André A1 - Winter, Alette A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strauch, Peter T1 - Tetrabromidocuprates(II)-Synthesis, Structure and EPR N2 - Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several “onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 226 KW - tetrabromidocuprate(II) KW - X-ray structure KW - electron paramagnetic resonance KW - copper(II) Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91470 ER - TY - THES A1 - Youk, Sol T1 - Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage N2 - The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a “functional” material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. %, oxygen contents of up to 19 wt.%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g–1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. % as well as a high porosity with a specific surface area of more than 1800 m2 g−1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol−1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g−1 and 0.25 cm3 g−1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications. N2 - Nanoporöse Kohlenstoffe haben in letzter Zeit aufgrund ihrer einzigartigen Eigenschaften als ein attraktives funktionelles poröses Material Aufmerksamkeit erregt. Diese Materialien sind aufgrund ihrer hohen chemischen und thermischen Stabilität und insbesondere aufgrund ihrer elektronischen Leitfähigkeit in Kombination mit hohen spezifischen Oberflächen von entscheidender Bedeutung für viele Anwendungen der modernen Wissenschaft und Industrie wie Wasser- und Luftreinigung, Katalyse, Gastrennung und Energiespeicherung/-umwandlung. Nanoporöse Kohlenstoffe können verwendet werden, um Umweltschadstoffe oder kleine Gasmoleküle wie CO2 zu adsorbieren und elektrochemische Energiespeicher wie Batterien und Brennstoffzellen anzutreiben. Ihre Porenstruktur oder ihre elektrischen Eigenschaften je nach Einsatzzweck modifiziert werden. Diese Arbeit bietet einen eingehenden Blick auf neuartige nanoporöse Kohlenstoffe aus synthetischer und anwendungstechnischer Sicht. Das Zusammenspiel zwischen Porenstruktur, atomarem Aufbau und den Adsorptionseigenschaften von nanoporösen Kohlenstoffmaterialien wird untersucht. Neuartige nanoporöse Kohlenstoffmaterialien werden unter Verwendung einfacher Vorläufermoleküle, die Heteroatome enthalten, durch ein einfaches Templatverfahren synthetisiert. Die Affinität und damit die Adsorptionskapazität von Kohlenstoffmaterialien gegenüber polaren Gasmolekülen (CO2 und H2O) wird durch die Modifikation ihres chemischen Aufbaus erhöht. Es wird auch gezeigt, dass diese Eigenschaften bei der elektrochemischen Energiespeicherung wichtig sind. Hier insbesondere für Superkondensatoren mit wässrigen Elektrolyten, die grundsätzlich auf der Physisorption von Ionen an Kohlenstoffoberflächen beruhen. Dies zeigt, dass nanoporöse Kohlenstoffe, genauso wie Zeolithen und MOFs, ein „funktionelles“ Material mit spezifischen physikalischen oder chemischen Wechselwirkungen mit Gastspezien sein können. Mit den Vorteilen einer hohen elektrischen Leitfähigkeit, einer gut entwickelten Porenstruktur und einer stark hydrophilen Oberflächenstruktur sind nanoporöse Kohlenstoffe vielversprechende Materialien, die weitreichende Auswirkungen auf verschiedene Bereiche des zukünftigen Energiebedarfs haben. KW - porous carbon KW - gas adsorption KW - energy storage KW - N-doped carbon KW - poröser Kohlenstoff KW - Gasadsorption KW - Energiespeicher KW - N-dotierter Kohlenstoff Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-539098 ER - TY - THES A1 - Yan, Runyu T1 - Nitrogen-doped and porous carbons towards new energy storage mechanisms for supercapacitors with high energy density T1 - Neuartige Energiespeichermechanismen in porösen und stickstoffdotierten Kohlenstoffen für die Anwendung in Superkondensatoren mit hoher Energiedichte N2 - Supercapacitors are electrochemical energy storage devices with rapid charge/discharge rate and long cycle life. Their biggest challenge is the inferior energy density compared to other electrochemical energy storage devices such as batteries. Being the most widely spread type of supercapacitors, electrochemical double-layer capacitors (EDLCs) store energy by electrosorption of electrolyte ions on the surface of charged electrodes. As a more recent development, Na-ion capacitors (NICs) are expected to be a more promising tactic to tackle the inferior energy density due to their higher-capacity electrodes and larger operating voltage. The charges are simultaneously stored by ion adsorption on the capacitive-type cathode surface and via faradic process in the battery-type anode, respectively. Porous carbon electrodes are of great importance in these devices, but the paramount problems are the facile synthetic routes for high-performance carbons and the lack of fundamental understanding of the energy storage mechanisms. Therefore, the aim of the present dissertation is to develop novel synthetic methods for (nitrogen-doped) porous carbon materials with superior performance, and to reveal a deeper understanding energy storage mechanisms of EDLCs and NICs. The first part introduces a novel synthetic method towards hierarchical ordered meso-microporous carbon electrode materials for EDLCs. The large amount of micropores and highly ordered mesopores endow abundant sites for charge storage and efficient electrolyte transport, respectively, giving rise to superior EDLC performance in different electrolytes. More importantly, the controversial energy storage mechanism of EDLCs employing ionic liquid (IL) electrolytes is investigated by employing a series of porous model carbons as electrodes. The results not only allow to conclude on the relations between the porosity and ion transport dynamics, but also deliver deeper insights into the energy storage mechanism of IL-based EDLCs which is different from the one usually dominating in solvent-based electrolytes leading to compression double-layers. The other part focuses on anodes of NICs, where novel synthesis of nitrogen-rich porous carbon electrodes and their sodium storage mechanism are investigated. Free-standing fibrous nitrogen-doped carbon materials are synthesized by electrospinning using the nitrogen-rich monomer (hexaazatriphenylene-hexacarbonitrile, C18N12) as the precursor followed by condensation at high temperature. These fibers provide superior capacity and desirable charge/discharge rate for sodium storage. This work also allows insights into the sodium storage mechanism in nitrogen-doped carbons. Based on this mechanism, further optimization is done by designing a composite material composed of nitrogen-rich carbon nanoparticles embedded in conductive carbon matrix for a better charge/discharge rate. The energy density of the assembled NICs significantly prevails that of common EDLCs while maintaining the high power density and long cycle life. N2 - Superkondensatoren sind elektrochemische Energiespeicher, die eine hohe Lade-/Entladerate und Zyklensta-bilität aufweisen, deren größte Einschränkung derzeit jedoch bei ihrer im Vergleich zu anderen Speicherlösungen, wie etwa Batterien, geringen Energiedichte liegt. Im am weitesten verbreiteten Superkondensatortyp, dem elektrochemischen Doppelschichtkondensator (engl. electrochemical double-layer capacitor, EDLC), wird die Energie durch Elektrosorption der Elektrolytionen an die geladene Elektrodenoberfläche gespeichert. Der Natrium-Ionen-Kondensator (engl. Na-ion capacitor, NIC) ist eine neuere Entwicklung und löst das Problem der geringen Energiedichte durch Verwendung von Elektroden mit einer höheren Kapazität und Betriebsspannung. Dies wird dadurch erreicht, dass simultan anodenseitig ein faradayscher Prozess und kathodenseitig der Aufbau einer elektrochemischen Doppelschicht genutzt werden. Somit kommen die Vorteile beider Phänomene zum Tragen. Poröse Kohlenstoffelektroden sind wichtig für beide Speichersysteme, wobei die Entwicklung einfacher Syn-theserouten für die Herstellung von Hochleistungskohlenstoffen und der Aufbau eines grundlegenden Ver-ständnisses der dem Energiespeicher zugrunde liegenden Mechanismen die vordergründigen Herausforde-rungen sind. Daher ist es das Ziel der vorliegenden Dissertation, neue Methoden zur Synthese (stickstoffdo-tierter) Kohlenstoffmaterialien mit überlegener Leistung zu erschließen und eine tiefere Einsicht in die me-chanistischen Aspekte der Funktionsweise der eingangs vorgestellten Superkondensatorsysteme zu erhalten. Im ersten Teil der Arbeit wird eine neuartige Synthese von Kohlenstoff-Elektrodenmaterialien für EDLCs vor-gestellt, welche ein hohes Volumen an Mikroporen und hochgeordneten Mesoporen aufweisen. Durch deren Einsatz kann in verschiedenen Elektrolytsystemen eine herausragende Energiedichte erzielt werden. Umso bedeutender sind die Ergebnisse der Untersuchung des kontrovers diskutierten Energiespeichermechanismus in EDLCs mit Elektrolyten auf Basis ionischer Flüssigkeiten (engl. ionic liquids, ILs) und Elektroden aus porösen Modellkohlenstoffen. Aus diesen können nicht nur Rückschlüsse auf den Zusammenhang zwischen Porosität und Ionentransportdynamik gezogen werden, sondern sie lassen auch wichtige Erkenntnisse auf die Mechanismen des Ladungsspeichers in IL-basierten EDLCs zu, welche sich grundlegend von dem in lösungsmittelbasierten Elektrolyten vorherrschenden Mechanismus, der Bildung einer Kompressionsdoppelschicht, unterscheiden. Im zweiten Teil des Werks liegt der Fokus auf der Synthese stickstoffreicher poröser Kohlenstoffelektroden als Anoden für NICs und der Untersuchung der Vorgänge während der Natriumeinlagerung in solchen Syste-men. Freistehende, faserartige und stickstoffdotierte Kohlenstoffmaterialien wurden durch Elektrospinnen des stickstoffreichen Monomers Hexaazatriphenylen-hexacarbonitril (C18N12) gefolgt von dessen Kondensati-on bei hoher Temperatur erhalten. Diese Fasern überzeugen durch überragende Kapazität und eine hohe Lade-/Entladerate beim Natriumspei-chervorgang. In diesem Rahmen wurde auch der Mechanismus der Natriumeinlagerung in stickstoffdotierten Kohlenstoffen beleuchtet und auf Basis dieser Erkenntnisse wurde eine weitere Optimierung vorgenommen. Indem ein Kompositmaterial aus stickstoffreichen Kohlenstoffnanopartikeln in einer leitfähigen Kohlenstoffmatrix erzeugt wurde, konnte die Lade-/Entladerate abermals verbessert werden. Somit übertrifft die Energiedichte der so konstruierten NICs die gewöhnlicher EDLCs, während deren hohe Leistungsdichte und Lebensdauer erhalten bleibt. KW - porous carbons KW - supercapacitors KW - high energy density KW - energy storage mechanism KW - poröse Kohlenstoffe KW - Superkondensatoren KW - hohe Energiedichte KW - Energiespeichermechanismus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431413 ER - TY - THES A1 - Xiong, Tao T1 - Vibrationally resolved absorption, emission, resonance Raman and photoelectron spectra of selected organic molecules, associated radicals and cations T1 - Schwingungsaufgelöste Absorptions-, Emissions-, Resonanz-Raman- und Photoelektronenspektren ausgewählter organischer Moleküle, assoziierter Radikale und Kationen BT - a time-dependent approach BT - ein zeitabhängiger Ansatz N2 - Time-dependent correlation function based methods to study optical spectroscopy involving electronic transitions can be traced back to the work of Heller and coworkers. This intuitive methodology can be expected to be computationally efficient and is applied in the current work to study the vibronic absorption, emission, and resonance Raman spectra of selected organic molecules. Besides, the "non-standard" application of this approach to photoionization processes is also explored. The application section consists of four chapters as described below. In Chapter 4, the molar absorptivities and vibronic absorption/emission spectra of perylene and several of its N-substituted derivatives are investigated. By systematically varying the number and position of N atoms, it is shown that the presence of nitrogen heteroatoms has a negligible effect on the molecular structure and geometric distortions upon electronic transitions, while spectral properties are more sensitive: In particular the number of N atoms is important while their position is less decisive. Thus, N-substitution can be used to fine-tune the optical properties of perylene-based molecules. In Chapter 5, the same methods are applied to study the vibronic absorption/emission and resonance Raman spectra of a newly synthesized donor-acceptor type molecule. The simulated absorption/emission spectra agree fairly well with experimental data, with discrepancies being attributed to solvent effects. Possible modes which may dominate the fine-structure in the vibronic spectra are proposed by analyzing the correlation function with the aid of Raman and resonance Raman spectra. In the next two chapters, besides the above types of spectra, the methods are extended to study photoelectron spectra of several small diamondoid-related systems (molecules, radicals, and cations). Comparison of the photoelectron spectra with available experimental data suggests that the correlation function based approach can describe ionization processes reasonably well. Some of these systems, cationic species in particular, exhibit somewhat peculiar optical behavior, which presents them as possible candidates for functional devices. Correlation function based methods in a more general sense can be very versatile. In fact, besides the above radiative processes, formulas for non-radiative processes such as internal conversion have been derived in literature. Further implementation of the available methods is among our next goals. N2 - Molekülsysteme bestehen aus Kernen und Elektronen, deren viel kleinere Masse sie in die Lage versetzten, sich der Bewegung des ersteren augenblicklich anzupassen. Daher ist die Bewegung der Elektronen und Kerne in einer guten ersten Annäherung "unabhängig", und die Energie der Elektronen kann zuerst berechnet werden, vorausgesetzt, die Kerne sind stationär. Die so gewonnene elektronische Energie wird zur Abstoßungsenergie zwischen den Kernen addiert, um ein Potential zu erhalten, das die Bewegung der Kerne bestimmt. Quantenmechanisch können sowohl die Elektronen als auch die Kerne nur bestimmte Energieniveaus haben. Die molekulare vibronische (= Schwingung + Elektronik) Absorptionsspektroskopie beinhaltet den Übergang der Elektronen und Kerne von ihrem Anfangs- in ihren Endzustand durch Photonenabsorption. Die größere elektronische Übergangsenergie bestimmt die Position des Absorptionsmaximums, während die kleinere nukleare Schwingungsübergangsenergie (ohne Berücksichtigung von Translation und Rotation) die Position der Teilmaxima innerhalb des Absorptionsbereichs bestimmt, wodurch die vibronische Feinstruktur entsteht. Ähnliche Ideen gelten auch für die vibronische Emissionsspektroskopie. Die Resonanz-Raman-Spektroskopie untersucht die Energieänderung des einfallenden Photons (dessen Energie ausreichend ist, um die Elektronen in einen höheren elektronischen Zustand anzuregen), nachdem es mit dem Molekül wechselwirkt. Der Energiegewinn oder -verlust des einfallenden Photons bewirkt eine Änderung des Schwingungszustandes. Die Photoelektronenspektroskopie ist ähnlich wie die vibronische Absorption, benötigt aber in der Regel mehr Energie des einfallenden Photons, da neben der Anregung des Moleküls in einen höheren vibronischen Zustand zusätzliche Energie benötigt wird, um ein Elektron aus dem Molekül zu entfernen. Diese spektroskopischen Techniken liefern wertvolle Informationen über die elektronische und nukleare Bewegung des Moleküls. Theoretisch können wir eine zeitabhängige Korrelationsfunktion verwenden, um die Spektren zu simulieren. Die Korrelationsfunktion für die Absorption ist beispielsweise eine Funktion der Zeit, deren Entwicklung Informationen über die elektronischen Energien und die nukleare Bewegung enthält. Um das Absorptionsspektrum in Form von Energie zu erhalten, wird ein mathematisches Verfahren, die so genannte Fourier-Transformation, auf die zeitabhängige Korrelationsfunktion angewendet, um ein energieabhängiges Spektrum zu erhalten. Diese Methode wird auf ausgewählte organische Moleküle, darunter einige Radikale und Kationen, angewandt, um deren elektronisches und optisches Verhalten unter dem Einfluss von einfallendem Licht zu untersuchen und Einblicke in das Design neuer optoelektronischer Bauelemente zu gewinnen. Bei einigen Molekülen/Systemen wird die vibronische Feinstruktur durch Faktoren wie molekulare Zusammensetzung und Umgebung wie Lösungsmittel beeinflusst, was darauf hindeutet, dass diese Systeme zur Feinabstimmung der gewünschten Eigenschaften verwendet werden können. Für andere Systeme gibt es fast keine sichtbare vibronische Feinstruktur, was bedeutet, dass sich die nukleare Bewegung solcher Systeme im Allgemeinen von derjenigen der vorherigen Kategorie unterscheidet. KW - vibrationally resolved electronic spectroscopy KW - photoelectron spectroscopy KW - resonance Raman spectroscopy KW - correlation function KW - ionization potential KW - time-dependent density functional theory KW - perylene KW - diamondoid KW - Schwingungsaufgelöste UV/VIS-Spektroskopie KW - Photoelektronenspektroskopie KW - Resonanz-Raman-Spektroskopie KW - Korrelationsfunktion KW - Ionisationspotential KW - Zeitabhängige Dichtefunktionaltheorie KW - Perylen KW - Diamondoide Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418105 ER - TY - GEN A1 - Xie, Zai-Lai A1 - Huang, Xing A1 - Titirici, Maria-Magdalena A1 - Taubert, Andreas T1 - Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal N2 - The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 283 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99427 ER - TY - THES A1 - Xie, Dongjiu T1 - Nanostructured Iron-based compounds as sulfur host material for lithium-sulfur batteries T1 - Nanostrukturierte Eisenverbindungen als Schwefel-Wirtsmaterial für Lithium-Schwefel-Batterien N2 - The present thesis focuses on the synthesis of nanostructured iron-based compounds by using β-FeOOH nanospindles and poly(ionic liquid)s (PILs) vesicles as hard and soft templates, respectively, to suppress the shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. Three types of composites with different nanostructures (mesoporous nanospindle, yolk-shell nanospindle, and nanocapsule) have been synthesized and applied as sulfur host material for Li-S batteries. Their interactions with LiPSs and effects on the electrochemical performance of Li-S batteries have been systematically studied. In the first part of the thesis, carbon-coated mesoporous Fe3O4 (C@M-Fe3O4) nanospindles have been synthesized to suppress the shuttle effect of LiPSs. First, β-FeOOH nanospindles have been synthesized via the hydrolysis of iron (III) chloride in aqueous solution and after silica coating and subsequent calcination, mesoporous Fe2O3 (M-Fe2O3) have been obtained inside the confined silica layer through pyrolysis of β-FeOOH. After the removal of the silica layer, electron tomography (ET) has been applied to rebuild the 3D structure of the M-Fe2O3 nanospindles. After coating a thin layer of polydopamine (PDA) as carbon source, the PDA-coated M-Fe2O3 particles have been calcinated to synthesize C@M-Fe3O4 nanospindles. With the chemisorption of Fe3O4 and confinement of mesoporous structure to anchor LiPSs, the composite C@M-Fe3O4/S electrode delivers a remaining capacity of 507.7 mAh g-1 at 1 C after 600 cycles. In the second part of the thesis, a series of iron-based compounds (Fe3O4, FeS2, and FeS) with the same yolk-shell nanospindle morphology have been synthesized, which allows for the direct comparison of the effects of compositions on the electrochemical performance of Li-S batteries. The Fe3O4-carbon yolk-shell nanospindles have been synthesized by using the β-FeOOH nanospindles as hard template. Afterwards, Fe3O4-carbon yolk-shell nanospindles have been used as precursors to obtain iron sulfides (FeS and FeS2)-carbon yolk-shell nanospindles through sulfidation at different temperatures. Using the three types of yolk-shell nanospindles as sulfur host, the effects of compositions on interactions with LiPSs and electrochemical performance in Li-S batteries have been systematically investigated and compared. Benefiting from the chemisorption and catalytic effect of FeS2 particles and the physical confinement of the carbon shell, the FeS2-C/S electrode exhibits the best electrochemical performance with an initial specific discharge capacity of 877.6 mAh g-1 at 0.5 C and a retention ratio of 86.7% after 350 cycles. In the third part, PILs vesicles have been used as soft template to synthesize carbon nanocapsules embedded with iron nitride particles to immobilize and catalyze LiPSs in Li-S batteries. First, 3-n-decyl-1-vinylimidazolium bromide has been used as monomer to synthesize PILs nanovesicles by free radical polymerization. Assisted by PDA coating route and ion exchange, PIL nanovesicles have been successfully applied as soft template in morphology-maintaining carbonization to prepare carbon nanocapsules embedded with iron nitride nanoparticles (FexN@C). The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electrical conductivity and strong chemical binding to LiPSs. The constructed FexN@C/S cathode demonstrates a high initial discharge capacity of 1085.0 mAh g-1 at 0.5 C with a remaining value of 930.0 mAh g-1 after 200 cycles. The results in the present thesis demonstrate the facile synthetic routes of nanostructured iron-based compounds with controllable morphologies and compositions using soft and hard colloidal templates, which can be applied as sulfur host to suppress the shuttle behavior of LiPSs. The synthesis approaches developed in this thesis are also applicable to fabricating other transition metal-based compounds with porous nanostructures for other applications. N2 - Die vorliegende Arbeit beschreibt die Synthese von nanostrukturierten Verbindungen auf Eisenbasis unter Verwendung von β-FeOOH-Nanospindeln und Vesikeln aus Poly(ionischen Flüssigkeiten) (PILs) als harte bzw. weiche Vorlagen, um den Shuttle-Effekt von Lithiumpolysulfiden (LiPSs) in Li-S-Batterien zu unterdrücken. Drei Arten von Verbundstoffen mit unterschiedlichen Nanostrukturen (mesoporöse Nanospindel, Dotterschalen-Nanospindel und Nanokapsel) wurden synthetisiert und als Schwefel-Wirtsmaterial für Li-S-Batterien eingesetzt. Ihre Wechselwirkungen mit LiPS und ihre Auswirkungen auf die elektrochemische Leistung von Li-S-Batterien wurden systematisch untersucht. Im ersten Teil der Arbeit wurden kohlenstoffbeschichtete mesoporöse Fe3O4 (C@M-Fe3O4) Nanospindeln synthetisiert, um den Shuttle-Effekt von LiPSs zu unterdrücken. Zunächst wurden β-FeOOH-Nanospindeln durch Hydrolyse von Eisen(III)-chlorid in wässriger Lösung synthetisiert. Nach der Beschichtung mit Siliziumdioxid und anschließender Kalzinierung wurde mesoporöses Fe2O3 (M-Fe2O3) innerhalb der begrenzten Siliziumdioxidschicht durch Pyrolyse von β-FeOOH erhalten. Nach der Entfernung der Siliziumdioxidschicht wurde Elektronentomographie (ET) eingesetzt, um die 3D-Struktur der M-Fe2O3-Nanospindeln zu rekonstruieren. Nach der Beschichtung mit einer dünnen Schicht Polydopamin (PDA) als Kohlenstoffquelle wurden die PDA-beschichteten M-Fe2O3-Partikel kalziniert, um C@M-Fe3O4-Nanospindeln zu synthetisieren. Durch die Chemisorption von Fe3O4 und die Einschließung der mesoporösen Struktur zur Verankerung der LiPSs liefert die zusammengesetzte C@M-Fe3O4/S-Elektrode nach 600 Zyklen eine Restkapazität von 507,7 mAh g-1 bei 1 C. Im zweiten Teil der Arbeit wurde eine Reihe von eisenbasierten Verbindungen (Fe3O4, FeS2, und FeS) mit der gleichen Dotterschalen-Nanospindel-Morphologie synthetisiert, was einen direkten Vergleich der Auswirkungen der Zusammensetzungen auf die elektrochemische Leistung von Li S-Batterien ermöglicht. Die Fe3O4-Kohlenstoff-Dotterschalen-Nanospindeln wurden unter Verwendung der β-FeOOH-Nanospindeln als harte Vorlage synthetisiert. Anschließend wurden Fe3O4-Kohlenstoff-Dotterschalen-Nanospindeln als Vorläufer verwendet, um Eisensulfide (FeS und FeS2) - Kohlenstoff-Dotterschalen-Nanospindeln durch Sulfidierung bei verschiedenen Temperaturen zu erhalten. Durch Verwendung der drei Arten von Dotterschalen-Nanospindeln als Schwefelwirt wurden die Auswirkungen der Zusammensetzungen auf die Wechselwirkungen mit LiPS und die elektrochemische Leistung in Li-S-Batterien systematisch untersucht und verglichen. Die FeS2-C/S-Elektrode, die von der Chemisorption und der katalytischen Wirkung der FeS2-Teilchen und dem physikalischen Einschluss der Kohlenstoffschale profitiert, zeigt die beste elektrochemische Leistung mit einer anfänglichen spezifischen Entladekapazität von 877,6 mAh g-1 bei 0,5 C und einem Kapazitätserhalt von 86,7 % nach 350 Zyklen. Im dritten Teil wurden PILs-Vesikel als weiche Vorlage verwendet, um Kohlenstoff-Nanokapseln zu synthetisieren, die mit Eisennitridpartikeln durchsetzt sind, um LiPSs in Li-S-Batterien zu immobilisieren und deren Umwandlung zu katalysieren. Zunächst wurde 3-n-Decyl-1-Vinylimidazoliumbromid als Monomer für die Synthese von PIL-Nanovesikeln durch radikalische Polymerisation verwendet. Mit Hilfe der PDA-Beschichtung und des Ionenaustauschs wurden die PIL-Nanomoleküle erfolgreich als weiche Vorlage bei der morphologieerhaltenden Karbonisierung eingesetzt, um Kohlenstoff-Nanokapseln mit eingebetteten Eisennitrid-Nanopartikeln (FexN@C) herzustellen. Die gut dispergierten Eisennitrid-Nanopartikel katalysieren die Umwandlung von LiPS in Li2S aufgrund ihrer hohen elektrischen Leitfähigkeit und starken chemischen Bindung an LiPS effektiv. Die konstruierte FexN@C/S-Kathode zeigt eine hohe anfängliche Entladekapazität von 1085,0 mAh g-1 bei 0,5 C mit einer verbleibenden Kapazität von 930,0 mAh g-1 nach 200 Zyklen. Die Ergebnisse dieser Arbeit zeigen, dass sich nanostrukturierte eisenbasierte Verbindungen mit kontrollierbarer Morphologie und Zusammensetzung leicht synthetisieren lassen, indem weiche und harte kolloidale Template verwendet werden, die als Schwefelwirt eingesetzt werden können, um das Shuttle-Verhalten von LiPS zu unterdrücken. Die in dieser Arbeit entwickelten Syntheseansätze sind auch für die Herstellung anderer Verbindungen auf Übergangsmetallbasis mit porösen Nanostrukturen für andere Anwendungen einsetzbar. KW - sulfur host KW - Schwefelwirt KW - Li-S batteries KW - Li-S-Batterien KW - iron-based compounds KW - Verbindungen auf Eisenbasis KW - nanospindles KW - Nanospindeln KW - vesicles KW - Vesikel KW - nanocapsules KW - Nanokapseln KW - poly(ionic liquid)s KW - poly(ionische Flüssigkeiten) KW - electron tomography KW - Elektronentomographie KW - cryo-electron microscopy KW - Kryo-Elektronenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610369 ER - TY - GEN A1 - Węcławski, Marek K. A1 - Tasior, Mariusz A1 - Hammann, Tommy A1 - Cywiński, Piotr J. A1 - Gryko, Daniel T. T1 - From π-expanded coumarins to π-expanded pentacenes N2 - The synthesis of two novel types of π-expanded coumarins has been developed. Modified Knoevenagel bis-condensation afforded 3,9-dioxa-perylene-2,8-diones. Subsequent oxidative aromatic coupling or light driven electrocyclization reaction led to dibenzo-1,7-dioxacoronene-2,8-dione. Unparalleled synthetic simplicity, straightforward purification and superb optical properties have the potential to bring these perylene and coronene analogs towards various applications. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 280 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98822 ER - TY - THES A1 - Won, Jooyoung T1 - Dynamic and equilibrium adsorption behaviour of ß-lactoglobulin at the solution/tetradecane interface: Effect of solution concentration, pH and ionic strength T1 - Dynamik und Gleichgewicht der Adsorption von ß-Lactoglobulin an der Grenzfläche Lösung / Tetradecan (W/TD) N2 - Proteins are amphiphilic and adsorb at liquid interfaces. Therefore, they can be efficient stabilizers of foams and emulsions. β-lactoglobulin (BLG) is one of the most widely studied proteins due to its major industrial applications, in particular in food technology. In the present work, the influence of different bulk concentration, solution pH and ionic strength on the dynamic and equilibrium pressures of BLG adsorbed layers at the solution/tetradecane (W/TD) interface has been investigated. Dynamic interfacial pressure (Π) and interfacial dilational elastic modulus (E’) of BLG solutions for various concentrations at three different pH values of 3, 5 and 7 at a fixed ionic strength of 10 mM and for a selected fixed concentration at three different ionic strengths of 1 mM, 10 mM and 100 mM are measured by Profile Analysis Tensiometer PAT-1 (SINTERFACE Technologies, Germany). A quantitative data analysis requires additional consideration of depletion due to BLG adsorption at the interface at low protein bulk concentrations. This fact makes experiments more efficient when oil drops are studied in the aqueous protein solutions rather than solution drops formed in oil. On the basis of obtained experimental data, concentration dependencies and the effect of solution pH on the protein surface activity was qualitatively analysed. In the presence of 10 mM buffer, we observed that generally the adsorbed amount is increasing with increasing BLG bulk concentration for all three pH values. The adsorption kinetics at pH 5 result in the highest Π values at any time of adsorption while it exhibits a less active behaviour at pH 3. Since the experimental data have not been in a good agreement with the classical diffusion controlled model due to the conformational changes which occur when the protein molecules get in contact with the hydrophobic oil phase in order to adapt to the interfacial environment, a new theoretical model is proposed here. The adsorption kinetics data were analysed with the newly proposed model, which is the classical diffusion model but modified by assuming an additional change in the surface activity of BLG molecules when adsorbing at the interface. This effect can be expressed through the adsorption activity constant in the corresponding equation of state. The dilational visco-elasticity of the BLG adsorbed interfacial layers is determined from measured dynamic interfacial tensions during sinusoidal drop area variations. The interfacial tension responses to these harmonic drop oscillations are interpreted with the same thermodynamic model which is used for the corresponding adsorption isotherm. At a selected BLG concentration of 2×10-6 mol/l, the influence of the ionic strength using different buffer concentration of 1, 10 and 100 mM on the interfacial pressure was studied. It is affected weakly at pH 5, whereas it has a strong impact by increasing buffer concentration at pH 3 and 7. In conclusion, the structure formation of BLG adsorbed layer in the early stage of adsorption at the W/TD interface is similar to those of the solution/air (W/A) surface. However, the equation of state at the W/TD interface provides an adsorption activity constant which is almost two orders of magnitude higher than that for the solution/air surface. At the end of this work, a new experimental tool called Drop and Bubble Micro Manipulator DBMM (SINTERFACE Technologies, Germany) has been introduced to study the stability of protein covered bubbles against coalescence. Among the available protocols the lifetime between the moment of contact and coalescence of two contacting bubble is determined for different BLG concentrations. The adsorbed amount of BLG is determined as a function of time and concentration and correlates with the observed coalescence behaviour of the contacting bubbles. N2 - Die vorliegende Arbeit ist ein Beitrag zum Verständnis des Überganges von der qualitativen zur quantitativen Beschreibung der Adsorption von Proteinen an der Wasser/Öl- Grenzfläche. Dabei wird die Adsorption des Molkeproteins ß-Lactoglobulin (BLG) an der Wasser/Tetradekan (W/TD) Grenzfläche untersucht. Die Proteinadsorption an Grenzflächen zwischen zwei nicht mischbaren Flüssigkeiten ist ein Zeitprozess. Die Tropfenprofil-Analysen-Tensiometrie (PAT) hat sich als optimale Methode erwiesen, um den Prozess der Bildung von Proteinadsorptionsschichten an Flüssig-/flüssig-Grenzflächen quantitativ zu untersuchen. Die gemessenen dynamischen Grenzflächenspannungen können genutzt werden, um die adsorbierte Menge von Protein an Grenzflächen zu bestimmen. Zusätzlich erlaubt die Methode, durch periodische Tropfenoszillationen, die Messung der Dilatations-Viskoelastizität. Die experimentellen Ergebnisse zeigen deutlich, dass die Adsorption von Proteinen mit der Konzentration ansteigt. Der Adsorptionsprozess von Proteinen ist ähnlich dem von Tensiden, allerdings wird seine Beschreibung wesentlich komplizierter, durch die zusätzliche Möglichkeit der Konformationsänderungen der Proteinmoleküle an der Grenzfläche. Ein kürzlich im Rahmen dieser Dissertation entwickeltes Modell zur Adsorptionskinetik von Proteinen wurde genutzt, um experimentelle Daten für BLG zu interpretieren. Dieses kinetische Modell erlaubt es, den Mechanismus der Proteinadsorption an der Wasser/Öl-Grenzfläche zu beschreiben, was durch ältere Modelle bisher nicht möglich war. Im neu entwickelten Modell wurde die klassische Diffusionstheorie so modifiziert, dass eine Änderung der Adsorptionsaktivität der adsorbierenden Proteinmoleküle berücksichtigt wird. Die Änderung der Adsorptionsaktivität geschieht durch den Kontakt adsorbierter BLG-Moleküle an der Wasser/Öl-Grenzfläche. Es wird nach diesem neuen Modell angenommen, dass die Adsorptionsaktivität eine Funktion der Adsorptionszeit ist. Die ansteigende Adsorptionaktivität ist erforderlich, um den Adsorptionsprozess von BLG über den gesamten Zeitbereich quantitativ zu beschrieben. Mit diesem neuen Modell wurde es möglich, die experimentellen Daten zur Adsorptionskinetik sowie zur Dilatationsrheologie von Adsorptionsschichten bei unterschiedlichen BLG-Konzentrationen, pH-Werten und Ionenstärken an der Grenzfläche Lösung/Tetradekan quantitativ zu beschreiben. Die Ergebnisse dienen als Ausgangspunkt für weitere Entwicklungen zur Verbesserung des Verständnisses der Stabilität von Schäumen und Emulsionen, die durch die Dynamik der Adsorption von Molekülen wie BLG signifikant beeinflusst wird. KW - beta-lactoglobulin KW - water/tetradecane interface KW - drop profile analysis tensiometry KW - dynamic interfacial tensions KW - protein adsorption KW - pH effect KW - ionic strength effect KW - protein stabilized foams KW - drop and bubble coalescence KW - interfacial dynamics KW - capillary pressure tensiometry KW - drop-drop interaction KW - bubble-bubble interaction KW - ß-Lactoglobulin KW - Flüssig-/flüssig-Grenzflächen KW - Wasser/Öl-Grenzfläche KW - Grenzfläche Lösung/Tetradecan KW - Dynamik der Adsorption KW - Gleichgewicht der Adsorption KW - Proteinadsorption KW - Tropfenprofil-Analysen-Tensiometrie KW - Tropfenoszillationen KW - Dilatations-Viskoelastizität KW - klassische Diffusionstheorie KW - Konformationsänderungen KW - Adsorptionsaktivität KW - Wirkung des pH-Werten KW - Wirkung des Ionenstärken KW - Stabilität von Schäumen KW - Stabilität von Emulsionen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99167 ER - TY - THES A1 - Wohlgemuth, Stephanie-Angelika T1 - Functional nanostructured hydrothermal carbons for sustainable technologies : heteroatom doping and superheated vapor T1 - Funktionelle, Nanostrukturierte Hydrothermal-Kohlenstoffe für Nachhaltige Technnologien: Heteroatom-Dotierung und Überkritischer Dampf N2 - The underlying motivation for the work carried out for this thesis was the growing need for more sustainable technologies. The aim was to synthesize a “palette” of functional nanomaterials using the established technique of hydrothermal carbonization (HTC). The incredible diversity of HTC was demonstrated together with small but steady advances in how HTC can be manipulated to tailor material properties for specific applications. Two main strategies were used to modify the materials obtained by HTC of glucose, a model precursor representing biomass. The first approach was the introduction of heteroatoms, or “doping” of the carbon framework. Sulfur was for the first time introduced as a dopant in hydrothermal carbon. The synthesis of sulfur and sulfur/nitrogen doped microspheres was presented whereby it was shown that the binding state of sulfur could be influenced by varying the type of sulfur source. Pyrolysis may additionally be used to tune the heteroatom binding states which move to more stable motifs with increasing pyrolysis temperature. Importantly, the presence of aromatic binding states in the as synthesized hydrothermal carbon allows for higher heteroatom retention levels after pyrolysis and hence more efficient use of dopant sources. In this regard, HTC may be considered as an “intermediate” step in the formation of conductive heteroatom doped carbon. To assess the novel hydrothermal carbons in terms of their potential for electrochemical applications, materials with defined nano-architectures and high surface areas were synthesized via templated, as well as template-free routes. Sulfur and/or nitrogen doped carbon hollow spheres (CHS) were synthesized using a polystyrene hard templating approach and doped carbon aerogels (CA) were synthesized using either the albumin directed or borax-mediated hydrothermal carbonization of glucose. Electrochemical testing showed that S/N dual doped CHS and aerogels derived via the albumin approach exhibited superior catalytic performance compared to solely nitrogen or sulfur doped counterparts in the oxygen reduction reaction (ORR) relevant to fuel cells. Using the borax mediated aerogel formation, nitrogen content and surface area could be tuned and a carbon aerogel was engineered to maximize electrochemical performance. The obtained sample exhibited drastically improved current densities compared to a platinum catalyst (but lower onset potential), as well as excellent long term stability. In the second approach HTC was carried out at elevated temperatures (550 °C) and pressure (50 bar), corresponding to the superheated vapor regime (htHTC). It was demonstrated that the carbon materials obtained via htHTC are distinct from those obtained via ltHTC and subsequent pyrolysis at 550 °C. No difference in htHTC-derived material properties could be observed between pentoses and hexoses. The material obtained from a polysaccharide exhibited a slightly lower degree of carbonization but was otherwise similar to the monosaccharide derived samples. It was shown that in addition to thermally induced carbonization at 550 °C, the SHV environment exhibits a catalytic effect on the carbonization process. The resulting materials are chemically inert (i.e. they contain a negligible amount of reactive functional groups) and possess low surface area and electronic conductivity which distinguishes them from carbon obtained from pyrolysis. Compared to the materials presented in the previous chapters on chemical modifications of hydrothermal carbon, this makes them ill-suited candidates for electronic applications like lithium ion batteries or electrocatalysts. However, htHTC derived materials could be interesting for applications that require chemical inertness but do not require specific electronic properties. The final section of this thesis therefore revisited the latex hard templating approach to synthesize carbon hollow spheres using htHTC. However, by using htHTC it was possible to carry out template removal in situ because the second heating step at 550 °C was above the polystyrene latex decomposition temperature. Preliminary tests showed that the CHS could be dispersed in an aqueous polystyrene latex without monomer penetrating into the hollow sphere voids. This leaves the stagnant air inside the CHS intact which in turn is promising for their application in heat and sound insulating coatings. Overall the work carried out in this thesis represents a noteworthy development in demonstrating the great potential of sustainable carbon materials. N2 - Das Ziel der vorgelegten Arbeit war es, mit Hilfe der Hydrothermalen Carbonisierung (HTC) eine Palette an verschiedenen Materialien herzustellen, deren physikalische und chemische Eigenschaften auf spezifische Anwendungen zugeschnitten werden können. Die Motivation hierfür stellt die Notwendigkeit, Alternativen zu Materialien zu finden, die auf fossilen Brennstoffen basieren. Dabei stellen vor allem nachhaltige Energien eine der größten Herausforderungen der Zukunft dar. HTC ist ein mildes, nachhaltiges Syntheseverfahren welches prinzipiell die Nutzung von biologischen Rohstoffen (z. B. landwirtschaftlichen Abfallprodukten) für die Herstellung von wertvollen, Kohlenstoff-basierten Materialien erlaubt. Es wurden zwei verschiedene Ansätze verwendet, um hydrothermalen Kohlenstoff zu modifizieren. Zum einen wurde HTC unter „normalen“ Bedingungen ausgeführt, d. h. bei 180 °C und einem Druck von etwa 10 bar. Der Zucker Glukose diente in allen Fällen als Kohlenstoff Vorläufer. Durch Zugabe von stickstoff und /oder schwefelhaltigen Additiven konnte dotierte Hydrothermalkohle hergestellt werden. Dotierte Kohlenstoffe sind bereits für ihre positiven Eigenschaften, wie verbesserte Leitfähigkeit oder erhöhte Stabilität, bekannt. Zusätzlich zu Stickstoff dotierter Hydrothermalkohle, die bereits von anderen Gruppen hergestellt werden konnte, wurde in dieser Arbeit zum ersten Mal Schwefel in Hydrothermalkohle eingebaut. Außerdem wurden verschiedene Ansätze verwendet, um Oberfläche und definierte Morphologie der dotierten Materialien zu erzeugen, welche wichtig für elektrochemische Anwendungen sind. Schwefel- und/oder stickstoffdotierte Kohlenstoff Nanohohlkugeln sowie Kohlenstoff Aerogele konnten hergestellt werden. Mit Hilfe von einem zusätzlichen Pyrolyseschritt (d. h. Erhitzen unter Schutzgas) konnte die Leitfähigkeit der Materialien hergestellt werden, die daraufhin als Nichtmetall-Katalysatoren für Wasserstoff-Brennstoffzellen getestet wurden. Im zweiten Ansatz wurde HTC unter extremen Bedingungen ausgeführt, d. h. bei 550 °C und einem Druck von ca. 50 bar, welches im Wasser Phasendiagram dem Bereich des Heißdampfes entspricht. Es konnte gezeigt werden, dass die so erhaltene Hydrothermalkohle ungewöhnliche Eigenschaften besitzt. So hat die Hochtemperatur-Hydrothermalkohle zwar einen hohen Kohlenstoffgehalt (mehr als 90 Massenprozent), enthält aber auch viele Wasserstoffatome und ist dadurch schlecht leitfähig. Da damit elektrochemische Anwendungen so gut wie ausgeschlossen sind, wurde die Hochtemperatur-Hydrothermalkohle für Anwendungen vorgesehen, welche chemische Stabilität aber keine Leitfähigkeit voraussetzen. So wurden beispielsweise Hochtemperatur-Kohlenstoff-Nanohohlkugeln synthetisiert, die großes Potential als schall- und wärmeisolierende Additive für Beschichtungen darstellen. Insgesamt konnten erfolgreich verschiedenste Materialien mit Hilfe von HTC hergestellt werden. Es ist zu erwarten, dass sie in Zukunft zu nachhaltigen Technologien und damit zu einem weiteren Schritt weg von fossilen Brennstoffen beitragen werden. KW - Hydrothermale Karbonisierung KW - Heteroatom-Dotierung KW - Aerogele KW - Hohlkugeln KW - Elektrokatalyse KW - Hydrothermal Carbonization KW - Heteroatom Doping KW - Aerogels KW - Hollow Spheres KW - Electrocatalysis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60120 ER - TY - GEN A1 - Wirth, Jonas A1 - Neumann, Rainer A1 - Antonietti, Markus A1 - Saalfrank, Peter T1 - Adsorption and photocatalytic splitting of water on graphitic carbon nitride BT - a combined first principles and semiempirical study N2 - Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 172 KW - augmented-wave method KW - hydrogen KW - initio molecular-dynamics KW - oxidation KW - photooxidation KW - reduction KW - simulations KW - tight-binding KW - transition KW - visible-light Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74391 SP - 15917 EP - 15926 ER - TY - GEN A1 - Wirth, Jonas A1 - Kirsch, Harald A1 - Wlosczyk, Sebastian A1 - Tong, Yujin A1 - Saalfrank, Peter A1 - Kramer Campen, Richard T1 - Characterization of water dissociation on α-Al2O3(1102) BT - theory and experiment N2 - The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(1[1 with combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1–4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm−1. Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 320 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394497 SP - 14822 EP - 14832 ER - TY - GEN A1 - Winter, Alette A1 - Thiel, Kerstin A1 - Zabel, André A1 - Klamroth, Tillmann A1 - Pöppl, Andreas A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas A1 - Strauch, Peter T1 - Tetrahalidocuprates(II) – structure and EPR spectroscopy BT - Part 2: tetrachloridocuprates(II) N2 - We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2− moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2− anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 240 KW - electron-spin resonance KW - liquid-crystal precursors KW - copper(II) halide salts KW - ionic liquid KW - square planar KW - tetrachlorocuprate(II) salts KW - molecular-structure KW - magnetic-properties KW - paramagnetic-resonance KW - temperature phase Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95012 SP - 1019 EP - 1030 ER - TY - THES A1 - Willersinn, Jochen T1 - Self-Assembly of double hydrophilic block copolymers T1 - Selbstorganisation Doppelt Hydrophiler Blockcopolymere BT - organized particles and vesicles beyond amphiphiles BT - organisierte Partikel und Vesikel jenseits von Amphiphilen N2 - The motivation of this work was to investigate the self-assembly of a block copolymer species that attended little attraction before, double hydrophilic block copolymers (DHBCs). DHBCs consist of two linear hydrophilic polymer blocks. The self-assembly of DHBCs towards suprastructures such as particles and vesicles is determined via a strong difference in hydrophilicity between the corresponding blocks leading to a microphase separation due to immiscibility. The benefits of DHBCs and the corresponding particles and vesicles, such as biocompatibility, high permeability towards water and hydrophilic compounds as well as the large amount of possible functionalizations that can be addressed to the block copolymers make the application of DHBC based structures a viable choice in biomedicine. In order to assess a route towards self-assembled structures from DHBCs that display the potential to act as cargos for future applications, several block copolymers containing two hydrophilic polymer blocks were synthesized. Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone) (PEO-b-PVP) and Poly(ethylene oxide)-b-poly(N-vinylpyrrolidone-co-N-vinylimidazole) (PEO-b-P(VP-co-VIm) block copolymers were synthesized via reversible deactivation radical polymerization (RDRP) techniques starting from a PEO-macro chain transfer agent. The block copolymers displayed a concentration dependent self-assembly behavior in water which was determined via dynamic light scattering (DLS). It was possible to observe spherical particles via laser scanning confocal microscopy (LSCM) and cryogenic scanning electron microscopy (cryo SEM) at highly concentrated solutions of PEO-b-PVP. Furthermore, a crosslinking strategy with (PEO-b-P(VP-co-VIm) was developed applying a diiodo derived crosslinker diethylene glycol bis(2-iodoethyl) ether to form quaternary amines at the VIm units. The formed crosslinked structures proved stability upon dilution and transfer into organic solvents. Moreover, self-assembly and crosslinking in DMF proved to be more advantageous and the crosslinked structures could be successfully transferred to aqueous solution. The afforded spherical submicron particles could be visualized via LSCM, cryo SEM and Cryo TEM. Double hydrophilic pullulan-b-poly(acrylamide) block copolymers were synthesized via copper catalyzed alkyne azide cycloaddition (CuAAC) starting from suitable pullulan alkyne and azide functionalized poly(N,N-dimethylacrylamide) (PDMA) and poly(N-ethylacrylamide) (PEA) homopolymers. The conjugation reaction was confirmed via SEC and 1H-NMR measurements. The self-assembly of the block copolymers was monitored with DLS and static light scattering (SLS) measurements indicating the presence of hollow spherical structures. Cryo SEM measurements could confirm the presence of vesicular structures for Pull-b-PEA block copolymers. Solutions of Pull-b-PDMA displayed particles in cryo SEM. Moreover, an end group functionalization of Pull-b-PDMA with Rhodamine B allowed assessing the structure via LSCM and hollow spherical structures were observed indicating the presence of vesicles, too. An exemplified pathway towards a DHBC based drug delivery vehicle was demonstrated with the block copolymer Pull-b-PVP. The block copolymer was synthesized via RAFT/MADIX techniques starting from a pullulan chain transfer agent. Pull-b-PVP displayed a concentration dependent self-assembly in water with an efficiency superior to the PEO-b-PVP system, which could be observed via DLS. Cryo SEM and LSCM microscopy displayed the presence of spherical structures. In order to apply a reversible crosslinking strategy on the synthesized block copolymer, the pullulan block was selectively oxidized to dialdehydes with NaIO4. The oxidation of the block copolymer was confirmed via SEC and 1H-NMR measurements. The self-assembled and oxidized structures were subsequently crosslinked with cystamine dihiydrochloride, a pH and redox responsive crosslinker resulting in crosslinked vesicles which were observed via cryo SEM. The vesicular structures of crosslinked Pull-b-PVP could be disassembled by acid treatment or the application of the redox agent tris(2-carboxyethyl)-phosphin-hydrochloride. The successful disassembly was monitored with DLS measurements. To conclude, self-assembled structures from DHBCs such as particles and vesicles display a strong potential to generate an impact on biomedicine and nanotechnologies. The variety of DHBC compositions and functionalities are very promising features for future applications. N2 - Die Selbstanordnung von amphiphilen Blockcopolymeren in Wasser zu Strukturen höherer Ordnung, wie Partikel oder Vesikel, ist seit vielen Jahren bekannt und findet Anwendung in vielen Aspekten der Medizin und Materialwissenschaft. Allerdings ist die treibende Kraft dieser Selbstanordnung zu Vesikeln, die Hydrophobie des wasserunlöslichen Polmyerblocks, auch ein Hindernis für den gezielten Transport von neuen Medikamenten und Wirkstoffen, da die Membran dieser Vesikel aufgrund des hydrophoben Anteils sehr dicht gepackt ist und eine Diffusion der Wirkstoffe durch diese Membran häufig nur durch hohen synthetischen Aufwand gewährleistet werden kann. Einen möglichen Ausweg bietet die Anwendung von doppelt hydrophilen Blockcopolymeren (DHBCs), respektive Blockcopolymere die aus zwei Polymerblöcken mit unterschiedlicher Hydrophilie bestehen. Ist dieser Unterschied groß genug, können DHBCs Partikel- und Vesikelstrukturen ausbilden, die denen der amphiphilen Blockcopolymere ähnlich sind. Um das Potential von DHBC Strukturen zu untersuchen und einen tieferen Einblick in die fundamentalen Prinzipien dieser Selbstanordnung zu erhalten, wurden in dieser Arbeit fünf verschiedene Blockcopolymere hergestellt. Poly(Ethylenoxid)-b-Poly(N-Vinylpyrrolidon) und Poly(Ethylenoxid)-b-Poly(N-Vinylpyrrolidon-co-N-Vinylimidazol) Blockcopolymere wurden über eine kontrollierte radikalische Polymerisation hergestellt und zeigten eine konzentrationsabhängige Selbstanordnung zu Partikeln mit Größen unter einem Mikrometer. Diese Partikel konnten vernetzt werden, sodass sie auch bei starker Verdünnung nicht zerfallen. Zwei Pullulan-b-Poly(Acrylamid) Blockcopolymere wurden über eine Konjugationsreaktion hergestellt, die die beiden separaten Polymerblöcke miteinander verbindet. Diese Blockcopolymere ordneten sich in Wasser zu Vesikulären Strukturen mit Größen zwischen 250 nm und 500 nm. Des Weiteren war es möglich, einen Farbstoff an ein Blockcopolymer anzubringen und den vesikulären Charakter mit konfokaler Mikroskopie zu untersuchen. Ein Ausblick auf mögliche medizinische Anwendung von DHBCs wurde mit dem letzten Blockcopolymer Pullulan-b-Poly(N-Vinylpyrrolidon) gegeben. Vesikel aus diesem Blockcopolymer wurden mit einem pH- und Redox-responsivem Vernetzer vernetzt und es wurde gezeigt, dass sich die vesikulären Strukturen durch Säurebehandlung zersetzen lassen. Dieses System veranschaulicht die theoretische Anwendungsmöglichkeit von DHBCs im gezielten Medikamententransport. KW - self-assembly KW - double hydrophilic block copolymers KW - polymer chemistry KW - RAFT/MADIX polymerization KW - block copolymer vesicles KW - Selbstorganisation KW - Doppelt hydrophile Blockcopolymere KW - Polymerchemie KW - RAFT/MADIX Polymerisation KW - Blockcopolymervesikel Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408578 ER - TY - GEN A1 - Wessig, Pablo A1 - Matthes, Annika T1 - Photochemical synthesis and properties of 1,6- and 1,8-Naphthalenophanes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Various 1,6- and 1,8-naphthalenophanes were synthesized by using the Photo-Dehydro-Diels-Alder (PDDA) reaction of bis-ynones. These compounds are easily accessible from omega-(3-iodophenyl)carboxylic acids in three steps. The obtained naphthalenophanes are axially chiral and the activation barrier for the atropisomerization could be determined in some cases by means of dynamic NMR (DNMR) and/or dynamic HPLC (DHPLC) experiments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1042 KW - photo-dehydro-Diels-Alder reaction KW - naphthalenophanes KW - atropisomerism KW - dynamic NMR KW - dynamic HPLC Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476675 SN - 1866-8372 IS - 1042 ER -