TY - THES A1 - Ziege, Ricardo T1 - Growth dynamics and mechanical properties of E. coli biofilms T1 - Wachstumsdynamik und mechanische Eigenschaften von E. coli Biofilmen N2 - Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields. N2 - Biofilme sind komplexe lebende Materialien, die sich bilden, wenn Bakterien in eine Matrix aus selbstproduzierten Protein- und Polysaccharidfasern eingebettet werden. Die Bildung eines Netzwerks aus extrazellulären Biopolymerfasern trägt zum Zusammenhalt des Biofilms bei, indem sie die Zell-Zell-Anhaftung fördert und die Wechselwirkungen zwischen Biofilm und Substrat vermittelt. Diese sessile Form des Bakterienwachstums wurde von Mikrobiologen eingehend untersucht, um die schädlichen Auswirkungen von Biofilmen in der Medizin und Industrie zu verhindern. Biofilme werden nämlich mit einer erhöhten Antibiotikaresistenz bei bakteriellen Infektionen in Verbindung gebracht, und sie können auch zur Verstopfung von Rohrleitungen führen oder Biokorrosion fördern. Biofilme sind jedoch auch für die Biophysik von Interesse, da sie während ihres Wachstums komplexe morphologische Muster bilden können. In jüngster Zeit werden auf dem aufstrebenden Gebiet der künstlich hergestellten lebenden Materialien die mechanischen Eigenschaften von Biofilmen auf verschiedenen Längenskalen untersucht und die Werkzeuge der synthetischen Biologie genutzt, um die Funktionen ihrer konstitutiven Biopolymere zu beeinflussen. In dieser Doktorarbeit soll geklärt werden, wie die Morphogenese von Escherichia coli (E. coli)-Biofilmen durch deren Wachstumsdynamik und mechanische Eigenschaften beeinflusst wird. Um dieser Frage nachzugehen, habe ich Methoden aus der Zellmechanik und der Materialwissenschaft verwendet. Zunächst habe ich untersucht, wie die biologische Aktivität in Biofilmen zu ungleichmäßigen Wachstumsmustern führt. In einer zweiten Studie untersuchte ich, wie sich die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften an einen Umweltstimulus, nämlich den Wassergehalt des Substrats, anpassen. Schließlich habe ich abgeschätzt, wie sich die mechanischen Eigenschaften von E. coli-Biofilmen verändern, wenn die Bakterien verschiedene extrazelluläre Biopolymere exprimieren. Auf nährstoffhaltigen Hydrogelen können mikrometergroße E. coli-Zellen zentimetergroße Biofilme bilden. Während dieses Prozesses führen die bakterielle Vermehrung und die Matrixproduktion zu mechanischen Spannungen im Biofilm, die sich durch die Bildung von makroskopischen Falten und delaminierten Knicken entladen. Um diese biologischen und mechanischen Phänomene miteinander in Beziehung zu setzen, habe ich mit Hilfe von Zeitraffer-Fluoreszenzaufnahmen die Zell- und Matrixoberflächendichte in den frühen und späten Phasen des E. coli-Biofilmwachstums verfolgt. Die Kolokalisierung hoher Zell- und Matrixdichten an der Peripherie geht dem Auftreten mechanischer Instabilitäten in diesem ringförmigen Bereich voraus. An diesem äußeren Ring wird ein frühes Wachstum festgestellt, das durch Zugabe von fluoreszierenden Mikrokugeln zum bakteriellen Inokulum analysiert wurde. Aber nur wenn im Zentrum des Biofilms hohe Raten der Matrixproduktion vorhanden sind, beginnt die Ausbreitung des gesamten Biofilms entlang der Feststoff-Luft-Grenzfläche. Indem ich größere fluoreszierende Partikel über einen längeren Zeitraum verfolgte, konnte ich mehrere kinematische Stadien der E. coli-Biofilmexpansion unterscheiden und einen Übergang von nichtlinearen zu linearen Geschwindigkeitsprofilen beobachten, der dem Auftreten von Falten an der Biofilmperipherie vorausgeht. Die Zerlegung der Partikelgeschwindigkeiten in ihre radialen und umlaufenden Komponenten ergab ein letztes kinematisches Stadium, in dem die Bewegung des Biofilms hauptsächlich auf die radialen delaminierten Knicke gerichtet ist, die sich vertikalisieren. Die in diesen Regionen berechneten Druckspannungen verformen die darunter liegenden Agarsubstrate erheblich. Die gleichzeitige Ansammlung höherer Zell- und Matrixdichten in einer ringförmigen Region und die Abfolge mehrerer kinematischer Stadien dürften somit das Entstehen mechanischer Instabilitäten an der Biofilm-Peripherie fördern. Diese experimentellen Ergebnisse werden voraussichtlich zukünftige Modellierungsansätze der Biofilmmorphogenese voranbringen. Die Morphogenese des E. coli-Biofilms wird voraussichtlich auch von externen Stimuli aus der Umwelt abhängen. Um zu klären, wie das Wasser zur Einstellung der Materialeigenschaften von Biofilmen genutzt werden könnte, haben wir das Wachstum, die Faltenbildung und die Steifigkeit von E. coli-Biofilmen in Abhängigkeit vom Wassergehalt der Nährsubstrate quantifiziert. Zeitraffermikroskopie und computergestützte Bildanalyse zeigten, dass Substrate mit hohem Wassergehalt die Ausbreitungskinetik des Biofilms fördern, während Substrate mit niedrigem Wassergehalt die Faltenbildung des Biofilms begünstigen. Die auf Biofilm-Querschnitten beobachteten Falten erschienen auf Substraten mit hohem Wassergehalt stärker gebogen, während sie auf Substraten mit niedrigem Wassergehalt eher vertikal verliefen. Sowohl die feuchte als auch die trockene Biomasse, die während der 4-tägigen Kultur akkumuliert wurde, war in Biofilmen, die auf Substraten mit hohem Wassergehalt gezüchtet wurden, größer, trotz der zusätzlichen Porosität innerhalb der Matrixschicht. Schließlich ergab die Mikroindentationsanalyse, dass Substrate mit niedrigem Wassergehalt die Bildung von steiferen Biofilmen begünstigten. Diese Studie zeigt, dass E. coli-Biofilme auf den Wassergehalt ihres Substrats reagieren, was für die Abstimmung ihrer Materialeigenschaften im Hinblick auf weitere Anwendungen genutzt werden könnte. Die Materialeigenschaften von Biofilmen hängen außerdem von der Zusammensetzung und Struktur der Matrix aus extrazellulären Proteinen und Polysacchariden ab. Insbesondere wurde vermutet, dass E. coli-Biofilme aufgrund eines dichten Fasernetzwerks aus Amyloid-Curli und Phosphoethanolamin-modifizierter Cellulose eine gewebeähnliche Elastizität aufweisen. Um den Beitrag dieser Komponenten zu den entstehenden mechanischen Eigenschaften von E. coli-Biofilmen zu verstehen, führten wir an Biofilmen, die aus Bakterien verschiedener Stämme gewachsen waren, Mikroeindrücke durch. Biofilme, die beide Hauptmatrixkomponenten enthalten, wiesen nicht nur eine höhere Trockenmasse, einen größeren Ausbreitungsdurchmesser und einen leicht verringerten Wassergehalt auf, sondern auch eine hohe Steifigkeit im Bereich von mehreren hundert kPa, ähnlich wie Biofilme, die nur Curli-Fasern enthalten. Das Fehlen von Amyloid-Curli-Fasern führt dagegen zu deutlich höheren Adhäsionsenergien und einem viskoelastischeren, flüssigkeitsähnlichen Materialverhalten. Die Kombination von Amyloid-Curli-Fasern und Phosphoethanolamin-modifizierten Cellulosefasern impliziert daher die Bildung eines Verbundmaterials, bei dem die Amyloid-Curli-Fasern den E. coli-Biofilmen Steifigkeit verleihen, während die Phosphoethanolamin-modifizierte Cellulose eher als Klebstoff wirkt. Diese Ergebnisse motivieren zu weiteren Studien mit gereinigten Versionen dieser Protein- und Polysaccharidkomponenten, um besser zu verstehen, wie ihre Interaktionen die Funktionen des Biofilms unterstützen. Alle drei Studien zeigen verschiedene Aspekte der Biofilm-Morphogenese, die miteinander verbunden sind. Die erste Arbeit zeigt den Zusammenhang zwischen ungleichmäßigen biologischen Aktivitäten und dem Auftreten mechanischer Instabilitäten im Biofilm auf. Die zweite Arbeit bestätigt die Anpassungsfähigkeit der Morphogenese des E. coli-Biofilms und seiner mechanischen Eigenschaften an einen Umweltreiz, nämlich Wasser. Die letzte Studie schließlich zeigt die komplementäre Rolle der einzelnen Matrixkomponenten bei der Bildung eines stabilen Biofilmmaterials, das nicht nur komplexe Morphologien bildet, sondern auch als Schutzschild für die darin enthaltenen Bakterien fungiert. Unsere experimentellen Erkenntnisse über die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften können weitere Auswirkungen auf grundlegende und angewandte Biofilm-Forschungsbereiche haben. KW - biofilm KW - E. coli KW - living materials KW - mechanobiology KW - E. coli KW - Biofilm KW - lebende Materialien KW - Mechanobiologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559869 ER - TY - GEN A1 - Seyrich, Maximilian A1 - Alirezaeizanjani, Zahra A1 - Beta, Carsten A1 - Stark, Holger T1 - Statistical parameter inference of bacterial swimming strategies T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We provide a detailed stochastic description of the swimming motion of an E. coli bacterium in two dimension, where we resolve tumble events in time. For this purpose, we set up two Langevin equations for the orientation angle and speed dynamics. Calculating moments, distribution and autocorrelation functions from both Langevin equations and matching them to the same quantities determined from data recorded in experiments, we infer the swimming parameters of E. coli. They are the tumble rate lambda, the tumble time r(-1), the swimming speed v(0), the strength of speed fluctuations sigma, the relative height of speed jumps eta, the thermal value for the rotational diffusion coefficient D-0, and the enhanced rotational diffusivity during tumbling D-T. Conditioning the observables on the swimming direction relative to the gradient of a chemoattractant, we infer the chemotaxis strategies of E. coli. We confirm the classical strategy of a lower tumble rate for swimming up the gradient but also a smaller mean tumble angle (angle bias). The latter is realized by shorter tumbles as well as a slower diffusive reorientation. We also find that speed fluctuations are increased by about 30% when swimming up the gradient compared to the reversed direction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 914 KW - E. coli KW - run and tumble KW - chemotaxis KW - stochastic processes KW - bacterial swimming strategies KW - parameter inference Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446214 SN - 1866-8372 IS - 914 ER - TY - GEN A1 - Unuabonah, Emmanuel I. A1 - Nöske, Robert A1 - Weber, Jens A1 - Günter, Christina A1 - Taubert, Andreas T1 - New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between ≈150 and 300 m2/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 720 KW - 4-nitrophenol KW - Carica papaya seeds KW - clay KW - E. coli KW - micro/mesoporous KW - nanocomposite KW - water remediation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426214 IS - 720 SP - 119 EP - 131 ER - TY - THES A1 - Schumann, Sara T1 - Influence of intestinal inflammation on bacterial protein expression in monoassociated mice T1 - Der Einfluss chronisch-entzündlicher Darmerkrankungen auf die Proteinexpression intestinaler E. coli N2 - Background: Increased numbers of intestinal E. coli are observed in inflammatory bowel disease, but the reasons for this proliferation and it exact role in intestinal inflammation are unknown. Aim of this PhD-project was to identify E. coli proteins involved in E. coli’s adaptation to the inflammatory conditions in the gut and to investigate whether these factors affect the host. Furthermore, the molecular basis for strain-specific differences between probiotic and harmful E. coli in their response to intestinal inflammation was investigated. Methods: Using mice monoassociated either with the adherent-invasive E. coli (AIEC) strain UNC or the probiotic E. coli Nissle, two different mouse models of intestinal inflammation were analysed: On the one hand, severe inflammation was induced by treating mice with 3.5% dextran sodium sulphate (DSS). On the other hand, a very mild intestinal inflammation was generated by associating interleukin 10-deficient (IL-10-/-) mice with E. coli. Differentially expressed proteins in the E. coli strains collected from caecal contents of these mice were identified by two-dimensional fluorescence difference gel electrophoresis. Results DSS-experiment: All DSS-treated mice revealed signs of a moderate caecal and a severe colonic inflammation. However, mice monoassociated with E. coli Nissle were less affected. In both E. coli strains, acute inflammation led to a downregulation of pathways involved in carbohydrate breakdown and energy generation. Accordingly, DSS-treated mice had lower caecal concentrations of bacterial fermentation products than the control mice. Differentially expressed proteins also included the Fe-S cluster repair protein NfuA, the tryptophanase TnaA, and the uncharacterised protein YggE. NfuA was upregulated nearly 3-fold in both E. coli strains after DSS administration. Reactive oxygen species produced during intestinal inflammation damage Fe-S clusters and thereby lead to an inactivation of Fe-S proteins. In vitro data indicated that the repair of Fe-S proteins by NfuA is a central mechanism in E. coli to survive oxidative stress. Expression of YggE, which has been reported to reduce the intracellular level of reactive oxygen species, was 4- to 8-fold higher in E. coli Nissle than in E. coli UNC under control and inflammatory conditions. In vitro growth experiments confirmed these results, indicating that E. coli Nissle is better equipped to cope with oxidative stress than E. coli UNC. Additionally, E. coli Nissle isolated from DSS-treated and control mice had TnaA levels 4- to 7-fold higher than E. coli UNC. In turn, caecal indole concentrations resulting from cleavage of tryptophan by TnaA were higher in E. coli Nissle- associated control mice than in the respective mice associated with E. coli UNC. Because of its anti-inflammatory effect, indole is hypothesised to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle. Results IL-10-/--experiment: Only IL-10-/- mice monoassociated with E. coli UNC for 8 weeks exhibited signs of a very mild caecal inflammation. In agreement with this weak inflammation, the variations in the bacterial proteome were small. Similar to the DSS-experiment, proteins downregulated by inflammation belong mainly to the central energy metabolism. In contrast to the DSS-experiment, no upregulation of chaperone proteins and NfuA were observed, indicating that these are strategies to overcome adverse effects of strong intestinal inflammation. The inhibitor of vertebrate C-type lysozyme, Ivy, was 2- to 3-fold upregulated on mRNA and protein level in E. coli Nissle in comparison to E. coli UNC isolated from IL-10-/- mice. By overexpressing ivy, it was demonstrated in vitro that Ivy contributes to a higher lysozyme resistance observed for E. coli Nissle, supporting the role of Ivy as a potential fitness factor in this E. coli strain. Conclusions: The results of this PhD-study demonstrate that intestinal bacteria sense even minimal changes in the health status of the host. While some bacterial adaptations to the inflammatory conditions are equal in response to strong and mild intestinal inflammation, other reactions are unique to a specific disease state. In addition, probiotic and colitogenic E. coli differ in their response to the intestinal inflammation and thereby may influence the host in different ways. N2 - Hintergrund: Chronisch entzündliche Darmerkrankungen zeichnen sich unter anderem durch eine starke Proliferation intestinaler E. coli aus. Unbekannt ist jedoch, ob diese Vermehrung eine Ursache oder eine Folge der Erkrankung darstellt. Ziel der vorliegenden Doktorarbeit war es daher, E. coli-Proteine zu identifizieren, welche der Anpassung an die entzündlichen Bedingungen im Darmtrakt dienen und unter Umständen einen Effekt auf den Gesundheitszustand des Wirtes haben. Weiterhin sollten die molekularen Ursachen für stammesspezifische Unterschiede zwischen probiotischen und gesundheitsschädlichen E. coli näher untersucht werden. Methoden: In den tierexperimentellen Analysen wurden keimfreie Mäuse entweder mit dem probiotischen E. coli Nissle oder dem adhärent-invasiven E. coli UNC monoassoziiert und in zwei verschiedenen Entzündungsmodellen näher untersucht. Einerseits wurde eine starke Darmentzündung durch die Gabe von 3,5% Natrium-Dextransulfat (DSS) ausgelöst. Andererseits wurde in Interleukin 10-defizienten (IL-10-/-) Mäusen eine sehr milde Form der Entzündung durch Besiedlung mit E. coli induziert. Die E. coli Bakterien wurden am Ende der Versuche aus den Caecuminhalten der Mäuse isoliert und die bakterielle Proteinexpression wurde mittels zwei-dimensionaler Gelelektrophorese analysiert. Ergebnisse des DSS-Versuchs: Alle Tiere des DSS-Versuchs entwickelten unabhängig vom E. coli Stamm, mit dem sie besiedelt waren, eine moderate Entzündung im Caecum und eine starke im Colon, wobei die Entzündungsreaktion durch die Monoassoziation mit E. coli Nissle leicht abgeschwächt wurde. In beiden E. coli Stämmen führte die Darmentzündung zu einer verringerten Expression von Enzymen des Kohlenhydratabbaus und der Energiegewinnung. In Folge dessen waren die intestinalen Konzentrationen bakterieller Fermentationsprodukte in den entzündeten Tieren geringer als in den gesunden Kontrolltieren. Weitere differentiell exprimierte Proteine umfassen das Fe-S- Cluster Reparaturprotein NfuA, die Tryptophanase TnaA und das uncharakterisierte Protein YggE. In beiden E. coli Stämmen, welche aus den DSS-Tieren isoliert wurden, war das NfuA Protein dreifach höher exprimiert. Eine Darmentzündung führt zu einer vermehrten Bildung reaktiver Sauerstoffspezies, welche die Fe-S-Cluster in Eisen-Schwefel-Proteinen zerstören und damit zu einer Inaktivierung dieser Proteine führen. In vitro Untersuchungen bestätigten, dass die Reparatur der Eisen-Schwefel-Proteine durch NfuA ein wichtiger Mechanismus ist um oxidativem Stress entgegenzuwirken. Das YggE Protein, welches laut Literaturangaben einen hemmenden Einfluss auf die Bildung reaktiver Sauerstoffspezies hat, war in E. coli Nissle 4- bis 8-fach erhöht (verglichen mit E. coli UNC unter Kontroll- und Entzündungsbedingungen). In vitro Versuche bestätigten diese Daten und zeigten, dass E. coli Nissle im Vergleich zu E. coli UNC eine erhöhte Resistenz gegenüber oxidativem Stress aufweist. Außerdem wurde im Vergleich E. coli Nissle vs. E. coli UNC (unter Entzündungs- und Kontrollbedingungen) ein 4- bis 7-fach erhöhter TnaA-Gehalt nachgewiesen. Indol, das Produkt der TnaA-katalysierten Tryptophanspaltung wurde in erhöhten Mengen im Intestinaltrakt E. coli Nissle-assoziierter Kontrolltiere detektiert. Seit längerem werden entzündungshemmende Eigenschaften für Indol postuliert, die aufgrund der Ergebnisse dieser Doktorarbeit nun auch mit den gesundheitsfördenden Eigenschaften von E. coli Nissle in Zusammenhang gebracht werden können. Ergebnisse des IL-10-/-- Versuchs: Nach einer 8-wöchigen Assoziationsdauer wurde nur in den mit E. coli UNC besiedelten IL-10-/- Tieren eine schwache Entzündungsreaktion nachgewiesen. Bedingt durch diese sehr schwach ausgeprägte Entzündungsantwort waren auch die Veränderungen im bakteriellen Proteom von E. coli UNC nur gering. Wie im DSS-Versuch waren Proteine des bakteriellen Energiestoffwechsels reprimiert, allerdings wurde keine Induktion von NfuA beobachtet. Daher scheint die Induktion von NfuA nur der Anpassung an eine starke Entzündung zu dienen. Weiterhin wurde nachgewiesen, dass E. coli Nissle aus IL-10-/- Tieren den Hemmer für das vertebrate C-Typ Lysozym (Ivy) sowohl auf mRNA- als auch auf Proteinebene stärker exprimiert als E. coli UNC. Überexpression von Ivy unter in vitro Bedingungen zeigte, dass es an der erhöhten Lysozymresistenz von E. coli Nissle beteiligt ist und somit eine Rolle als möglicher Fitnessfaktor von E. coli Nissle spielt. Schlussfolgerungen: In dieser Doktorarbeit wurde gezeigt, dass Darmentzündungen die Proteinexpression eines im Darm lebenden Bakteriums beeinflussen. Einige der aufgedeckten bakteriellen Anpassungsreaktionen werden sowohl bei einer starken als auch bei einer schwachen Entzündung ausgelöst; andere wiederum sind spezifisch für nur einen dieser Entzündungszustände. Weiterhin wurde deutlich, dass sich E. coli-Stämme hinsichtlich ihrer Reaktion auf eine Darmentzündung unterscheiden und damit möglicherweise den Wirt beeinflussen.  KW - E. coli KW - chronisch-entzündliche Darmerkrankungen KW - Proteom KW - Ivy KW - Probiotika KW - E. coli KW - inflammatory bowel disease KW - proteomics KW - Ivy KW - probiotics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-67757 ER -