TY - THES A1 - von Reppert, Alexander T1 - Magnetic strain contributions in laser-excited metals studied by time-resolved X-ray diffraction T1 - Untersuchung magnetischer Beiträge zur Ausdehnung laserangeregter Metalle mittels zeitaufgelöster Röntgenbeugungsexperimente N2 - In this work I explore the impact of magnetic order on the laser-induced ultrafast strain response of metals. Few experiments with femto- or picosecond time-resolution have so far investigated magnetic stresses. This is contrasted by the industrial usage of magnetic invar materials or magnetostrictive transducers for ultrasound generation, which already utilize magnetostrictive stresses in the low frequency regime. In the reported experiments I investigate how the energy deposition by the absorption of femtosecond laser pulses in thin metal films leads to an ultrafast stress generation. I utilize that this stress drives an expansion that emits nanoscopic strain pulses, so called hypersound, into adjacent layers. Both the expansion and the strain pulses change the average inter-atomic distance in the sample, which can be tracked with sub-picosecond time resolution using an X-ray diffraction setup at a laser-driven Plasma X-ray source. Ultrafast X-ray diffraction can also be applied to buried layers within heterostructures that cannot be accessed by optical methods, which exhibit a limited penetration into metals. The reconstruction of the initial energy transfer processes from the shape of the strain pulse in buried detection layers represents a contribution of this work to the field of picosecond ultrasonics. A central point for the analysis of the experiments is the direct link between the deposited energy density in the nano-structures and the resulting stress on the crystal lattice. The underlying thermodynamical concept of a Grüneisen parameter provides the theoretical framework for my work. I demonstrate how the Grüneisen principle can be used for the interpretation of the strain response on ultrafast timescales in various materials and that it can be extended to describe magnetic stresses. The class of heavy rare-earth elements exhibits especially large magnetostriction effects, which can even lead to an unconventional contraction of the laser-excited transducer material. Such a dominant contribution of the magnetic stress to the motion of atoms has not been demonstrated previously. The observed rise time of the magnetic stress contribution in Dysprosium is identical to the decrease in the helical spin-order, that has been found previously using time-resolved resonant X-ray diffraction. This indicates that the strength of the magnetic stress can be used as a proxy of the underlying magnetic order. Such magnetostriction measurements are applicable even in case of antiparallel or non-collinear alignment of the magnetic moments and a vanishing magnetization. The strain response of metal films is usually determined by the pressure of electrons and lattice vibrations. I have developed a versatile two-pulse excitation routine that can be used to extract the magnetic contribution to the strain response even if systematic measurements above and below the magnetic ordering temperature are not feasible. A first laser pulse leads to a partial ultrafast demagnetization so that the amplitude and shape of the strain response triggered by the second pulse depends on the remaining magnetic order. With this method I could identify a strongly anisotropic magnetic stress contribution in the magnetic data storage material iron-platinum and identify the recovery of the magnetic order by the variation of the pulse-to-pulse delay. The stark contrast of the expansion of iron-platinum nanograins and thin films shows that the different constraints for the in-plane expansion have a strong influence on the out-of-plane expansion, due to the Poisson effect. I show how such transverse strain contributions need to be accounted for when interpreting the ultrafast out-of-plane strain response using thermal expansion coefficients obtained in near equilibrium conditions. This work contributes an investigation of magnetostriction on ultrafast timescales to the literature of magnetic effects in materials. It develops a method to extract spatial and temporal varying stress contributions based on a model for the amplitude and shape of the emitted strain pulses. Energy transfer processes result in a change of the stress profile with respect to the initial absorption of the laser pulses. One interesting example occurs in nanoscopic gold-nickel heterostructures, where excited electrons rapidly transport energy into a distant nickel layer, that takes up much more energy and expands faster and stronger than the laser-excited gold capping layer. Magnetic excitations in rare earth materials represent a large energy reservoir that delays the energy transfer into adjacent layers. Such magneto-caloric effects are known in thermodynamics but not extensively covered on ultrafast timescales. The combination of ultrafast X-ray diffraction and time-resolved techniques with direct access to the magnetization has a large potential to uncover and quantify such energy transfer processes. N2 - In dieser Arbeit untersuche ich den Einfluss magnetischer Ordnung auf die laser-induzierte, ultraschnelle Ausdehnung von Metallen. In Experimenten mit Femto- oder Pikosekunden Zeitauflösung sind magnetische Drücke bisher kaum erforscht. Dies steht im Kontrast zur industriellen Verwendung von magnetischen Invar Materialien oder magnetostriktiven Ultraschallgebern, in denen magnetische Drücke bereits in niedrigeren Frequenzbereichen Anwendung finden. In meinen Experimenten untersuche ich, wie der Energieeintrag durch die Absorption von Femtosekunden-Laserpulsen in dünnen Metallschichten zu einem ultraschnellen Druckanstieg führt. Dabei nutze ich, dass der Druckanstieg zu einer Ausdehnung führt, welche Deformationswellen auf der Nanometerskala, sogenannte Hyperschallpulse, in angrenzende Schichten aussendet. Sowohl die Ausdehnung als auch die Deformationspulse ändern den mittleren Abstand zwischen den Atomen in der Probe, welcher mittels Röntgenbeugung an einer Laser-getriebenen Plasma-Röntgenquelle mit einer Subpikosekunden-Zeitauflösung detektiert wird. Das Verfahren der ultraschnellen Röntgenbeugung gelingt auch in Heterostrukturen mit vergrabenen Detektionsschichten, zu denen optische Methoden aufgrund ihrer limitierter Eindringtiefe in Metallen keinen Zugang haben. Ein Beitrag dieser Arbeit zum Feld der Pikosekunden-Akustik ist es, aus der Ausdehnung einer solchen Detektionsschicht Rückschlüsse auf die initialen Energietransferprozesse zu ziehen. Der direkte Zusammenhang zwischen der eingebrachten Energiedichte in die Nanostrukturen und dem resultierenden Druck auf das Atomgitter ist ein zentraler Punkt in meiner Analyse der Experimente. Das zu Grunde liegende thermodynamische Konzept des Grüneisen-Parameters bildet den theoretischen Kontext meiner Publikationen. Anhand verschiedener Materialien demonstriere ich, wie dieses Prinzip auch zur Analyse der Ausdehnung auf ultraschnellen Zeitskalen verwendet werden kann und sich auch auf magnetische Drücke übertragen lässt. Insbesondere in der Materialklasse der schweren, seltenen Erdelemente sind Magnetostriktionseffekte sehr groß und führen dort sogar zu einem ungewöhnlichen Zusammenziehen des Materials nach der Laseranregung. Solch ein bestimmender Einfluss des magnetischen Drucks auf die Atombewegung ist bisher nicht gezeigt worden. Die Zeitskala des magnetischen Druckanstiegs entspricht dabei der beobachteten Abnahme der helikalen Spin-Ordnung, welche zuvor mittels zeitaufgelöster, resonanter Röntgenbeugung ermittelt wurde. Dies zeigt, dass die Stärke des magnetischen Drucks als Maß für magnetische Ordnung dienen kann, insbesondere auch im Fall von antiparalleler oder nicht-kollinearer Ordnung der magnetischen Momente in Proben mit verschwindender Magnetisierung. In Metallfilmen ist die Dehnung des Atomgitters in der Regel durch Druck von Elektronen und Gitterschwingungen geprägt. Um den magnetischen Druckbeitrag auch in solchen Fällen zu extrahieren, in denen systematische Experimente oberhalb und unterhalb der magnetischen Ordnungstemperatur nicht praktikabel sind, habe ich ein neuartiges Doppelpuls-Anregungsverfahren entwickelt, welches allgemein für die Untersuchung von Phasenübergängen nützlich ist. Der Energieeintrag durch den ersten Laserpuls führt dabei zu einer partiellen, ultraschnellen Demagnetisierung, sodass die Amplitude und Form der Gitterausdehnung nach dem zweiten Puls von der Stärke des verbliebenen magnetischen Drucks und somit von der verbliebenen magnetischen Ordnung abhängt. Mit dieser Methode ist es möglich geworden, einen stark richtungsabhängigen, magnetischen Druckbeitrag im Speichermedium Eisen-Platin zu identifizieren und mittels Variation des Puls-zu-Puls Abstands auch die Rückkehr der magnetischen Ordnung zu zeigen. Die unterschiedliche Ausdehnung von Eisen-Platin Nanopartikeln und dünnen Filmen zeigt dabei, dass die verschiedenen Zwangsbedingungen für die Ausdehnung entlang der Probenoberfläche aufgrund des Poisson-Effekts einen entscheidenden Einfluss auf die ultraschnelle Ausdehnung senkrecht zur Probenoberfläche hat. Ich analysiere, wie die zugrunde liegende Querkontraktion bei der Interpretation der ultraschnellen Ausdehnung auf der Basis von thermischen Ausdehnungskoeffizienten im Quasi-Gleichgewicht berücksichtigt werden kann. Meine Arbeit erweitert die Literatur um einen Beitrag zur ultraschnellen Magnetostriktion und entwickelt eine Methodik mittels derer räumlich und zeitlich variierende Druckbeiträge anhand einer Modellierung der Form der Deformationswellen extrahiert werden können. Energietransferprozesse spiegeln sich dabei durch eine Änderung des Druckprofils gegenüber dem Absorptionsprofil der Laserpulse wider. KW - lattice dynamics KW - magnetism KW - ultrafast KW - X-ray diffraction KW - Gitterdynamik KW - Magnetismus KW - ultraschnell KW - Röntgenbeugung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-535582 ER - TY - THES A1 - Pudell, Jan-Etienne T1 - Lattice dynamics T1 - Gitterdynamik BT - observed with x-ray diffraction BT - beobachtet mit Röntgenbeugung N2 - In this thesis I summarize my contribution to the research field of ultrafast structural dynamics in condensend matter. It consists of 17 publications that cover the complex interplay between electron, magnon, and phonon subsystems in solid materials and the resulting lattice dynamics after ultrafast photoexcitation. The investigation of such dynamics is necessary for the physical understanding of the processes in materials that might become important in the future as functional materials for technological applications, for example in data storage applications, information processing, sensors, or energy harvesting. In this work I present ultrafast x-ray diffraction (UXRD) experiments based on the optical pump – x-ray probe technique revealing the time-resolved lattice strain. To study these dynamics the samples (mainly thin film heterostructures) are excited by femtosecond near-infrared or visible light pulses. The induced strain dynamics caused by stresses of the excited subsystems are measured in a pump-probe scheme with x-ray diffraction (XRD) as a probe. The UXRD setups used during my thesis are a laser-driven table-top x-ray source and large-scale synchrotron facilities with dedicated time-resolved diffraction setups. The UXRD experiments provide quantitative access to heat reservoirs in nanometric layers and monitor the transient responses of these layers with coupled electron, magnon, and phonon subsystems. In contrast to optical probes, UXRD allows accessing the material-specific information, which is unavailable for optical light due to the detection of multiple indistinguishable layers in the range of the penetration depth. In addition, UXRD facilitates a layer-specific probe for layers buried opaque heterostructures to study the energy flow. I extended this UXRD technique to obtain the driving stress profile by measuring the strain dynamics in the unexcited buried layer after excitation of the adjacent absorbing layers with femtosecond laser pulses. This enables the study of negative thermal expansion (NTE) in magnetic materials, which occurs due to the loss of the magnetic order. Part of this work is the investigation of stress profiles which are the source of coherent acoustic phonon wave packets (hypersound waves). The spatiotemporal shape of these stress profiles depends on the energy distribution profile and the ability of the involved subsystems to produce stress. The evaluation of the UXRD data of rare-earth metals yields a stress profile that closely matches the optical penetration profile: In the paramagnetic (PM) phase the photoexcitation results in a quasi-instantaneous expansive stress of the metallic layer whereas in the antiferromagnetic (AFM) phase a quasi-instantaneous contractive stress and a second contractive stress contribution rising on a 10 ps time scale adds to the PM contribution. These two time scales are characteristic for the magnetic contribution and are in agreement with related studies of the magnetization dynamics of rare-earth materials. Several publications in this thesis demonstrate the scientific progress in the field of active strain control to drive a second excitation or engineer an ultrafast switch. These applications of ultrafast dynamics are necessary to enable control of functional material properties via strain on ultrafast time scales. For this thesis I implemented upgrades of the existing laser-driven table-top UXRD setup in order to achieve an enhancement of x-ray flux to resolve single digit nanometer thick layers. Furthermore, I developed and built a new in-situ time-resolved magneto-optic Kerr effect (MOKE) and optical reflectivity setup at the laser-driven table-top UXRD setup to measure the dynamics of lattice, electrons and magnons under the same excitation conditions. N2 - In dieser Doktoarbeit sind meine Beiträge zum Forschungsgebiet der ltraschnellen Strukturdynamik in kondensierter Materie zusammegefasst. Sie besteht aus 17 Publikationen, welche dieWechselwirkung zwischen Elektron-, Magnon- und Phononsystem in Festkörpern, sowie die dadurch verursachte Gitterdynamik nach ultraschneller optischer Anregung diskutieren. Die Untersuchung dieser Dynamik ist erforderlich für das physikalische Verständnis der Prozesse in Materialien, die in Zukunft als Funktionsmaterialien für technologische Anwendungen, z.B. in der Datenspeicherung und Informationsverarbeitung, sowie bei Sensoren und der Energiegewinnung, wichtig werden könnten. In dieser Arbeit präsentiere ich Experimente, welche ultraschneller Röntgenbeugung (UXRD) als Technik nutzen. Sie basiert auf der Anrege-Abfrage-Technik: Die Dynamik in der Probe (hauptsächlich Dünnfilm-Heterostrukturen) wird durch Femtosekunden-Lichtpulse im nahen Infrarot oder im sichtbaren Bereich angeregt. Die Dehnung des Materials, welche die Spannung (Druck) der angeregten Teilsysteme hervorruft, wird mit Röntgenbeugung als Abfrage gemessen. Während meiner Doktorandentätigkeit habe ich zwei Arten von Aufbauten zur UXRD genutzt: lasergetriebene laborbasierte Röntgenquellen und Synchrotronstrahlungsquellen mit zugehörigen zeitaufgelösten Messinstrumenten. Mit den UXRD-Experimenten kann die gespeicherte Energie unterschiedlicher gekoppelter Teilsysteme, wie Elektronen, Mangonen und Phononen, einer nur wenige Nanometer dicken Schicht gemessen werden. Im Vergleich zu optischenMesstechniken bietet UXRD den Zugriff auf materialspezifische Informationen, die für optisches Licht aufgrund der Detektion mehrerer nicht unterscheidbarer Schichten im Bereich der Eindringtiefe nicht zur Verfügung steht. Darüber hinaus lässt sich mit UXRD eine für optische Detektion verdeckte Schicht als schichtspezifische Sonde nutzen, um den Energietransport zu untersuchen. Dieses Prinzip wurde dazu genutzt, um das treibende Spannungsprofil mittels der Dehnungsdynamik in einer angrenzenden, optisch nicht angeregten Schicht zu messen. Dies ermöglichte die Untersuchung der Dichteanomalie in magnetischen Materialen, die durch den Verlust der magnetischen Ordnung entsteht. Ebenfalls Teil dieser Arbeit ist die Untersuchung von Spannungsprofilen als Quelle von kohärenten akustischen Phononen (Hyperschallwellen). Das raumzeitliche Profil des Spannungsprofils hängt von der Energieverteilung innerhalb der Teilsysteme und ihrer Fähigkeit ab, Energie in Dehnung umzusetzen. Die Auswertung von UXRD Experimenten an Metallen der Seltenen Erden ergab ein Spannungsprofil, dass dem Absorptionsprofil der optischen Anregung entsprach: In der paramagnetischen Phase erzeugte es einen instantanen expansiven Druck, wohingegen in der antiferromagnetischen Phase ein instantaner und ein auf einer 10 ps Zeitskala ansteigender kontrahierender Druck zusätzlich auftritt. Die beiden charakteristischen Zeitskalen in der antiferromagnetischen Phase sind in Übereinstimmung mit verschiedenen Studien der Demagnetisierungsdynamik in den Metallen der Seltenen Erden. Einige Publikationen dieser Arbeit beschäftigen sich mit Feld der aktiven Dehnungskontrolle. Dies ermöglich die Kontrolle von Funktionsmaterialen via Dehnung auf ultraschnellen Zeitskalen. Im Rahmen meiner Doktorandentätigkeit habe ich den lasergetriebenen UXRD Aufbau optimiert, um mit dem hohen Röntgenfluss Experimente mit nur einigen Nanometer dicken Schichten zu ermöglichen. Diese Maschine habe ich um einen zeitaufgelösten Aufbau zur in situ Messung der Reflektivität und Magnetisierungsdynamik mittels magnetooptischem Kerr-Effekt ergänzt. Dies ermöglicht die gleichzeitige Messung von Gitter-, Elektronen- und Magnonendynamik unter derselben Anregebedingung. KW - ultrafast x-ray diffraction KW - ultraschnelle Röntgendiffraktion KW - lattice dynamics KW - Gitterdynamik KW - nanoscale heat transfer KW - nanoskaliger Wärmetransport KW - ultrafast magnetism KW - ultraschneller Magnetimus KW - mechanical and acoustical properties KW - mechanische und akustische Eigenschaften Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484453 ER - TY - THES A1 - Schick, Daniel T1 - Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes T1 - Ultraschnelle Gitterdynamik in optisch angeregten Nanostrukturen : Femtosekunden-Röntgendiffraktion mit optimierten Auswerteroutinen N2 - Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. N2 - Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin. KW - ultraschnelle Röntgendiffraktion KW - Gitterdynamik KW - Nanostruktur KW - optische Anregung KW - Perowskit KW - ultrafast X-ray diffraction KW - lattice dynamics KW - nanostructure KW - photoexcitation KW - perovskite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68827 ER - TY - THES A1 - Ahnert, Karsten T1 - Compactons in strongly nonlinear lattices T1 - Kompaktonen in stark nichtlinearen Gittern N2 - In the present work, we study wave phenomena in strongly nonlinear lattices. Such lattices are characterized by the absence of classical linear waves. We demonstrate that compactons – strongly localized solitary waves with tails decaying faster than exponential – exist and that they play a major role in the dynamics of the system under consideration. We investigate compactons in different physical setups. One part deals with lattices of dispersively coupled limit cycle oscillators which find various applications in natural sciences such as Josephson junction arrays or coupled Ginzburg-Landau equations. Another part deals with Hamiltonian lattices. Here, a prominent example in which compactons can be found is the granular chain. In the third part, we study systems which are related to the discrete nonlinear Schrödinger equation describing, for example, coupled optical wave-guides or the dynamics of Bose-Einstein condensates in optical lattices. Our investigations are based on a numerical method to solve the traveling wave equation. This results in a quasi-exact solution (up to numerical errors) which is the compacton. Another ansatz which is employed throughout this work is the quasi-continuous approximation where the lattice is described by a continuous medium. Here, compactons are found analytically, but they are defined on a truly compact support. Remarkably, both ways give similar qualitative and quantitative results. Additionally, we study the dynamical properties of compactons by means of numerical simulation of the lattice equations. Especially, we concentrate on their emergence from physically realizable initial conditions as well as on their stability due to collisions. We show that the collisions are not exactly elastic but that a small part of the energy remains at the location of the collision. In finite lattices, this remaining part will then trigger a multiple scattering process resulting in a chaotic state. N2 - In der hier vorliegenden Arbeit werden Wellenphänomene in stark nichtlinearen Gittern untersucht. Diese Gitter zeichnen sich vor allem durch die Abwesenheit von klassischen linearen Wellen aus. Es wird gezeigt, dass Kompaktonen – stark lokalisierte solitäre Wellen, mit Ausläufern welche schneller als exponentiell abfallen – existieren, und dass sie eine entscheidende Rolle in der Dynamik dieser Gitter spielen. Kompaktonen treten in verschiedenen diskreten physikalischen Systemen auf. Ein Teil der Arbeit behandelt dabei Gitter von dispersiv gekoppelten Oszillatoren, welche beispielsweise Anwendung in gekoppelten Josephsonkontakten oder gekoppelten Ginzburg-Landau-Gleichungen finden. Ein weiterer Teil beschäftigt sich mit Hamiltongittern, wobei die granulare Kette das bekannteste Beispiel ist, in dem Kompaktonen beobachtet werden können. Im dritten Teil werden Systeme, welche im Zusammenhang mit der Diskreten Nichtlinearen Schrödingergleichung stehen, studiert. Diese Gleichung beschreibt beispielsweise Arrays von optischen Wellenleitern oder die Dynamik von Bose-Einstein-Kondensaten in optischen Gittern. Das Studium der Kompaktonen basiert hier hauptsächlich auf dem numerischen Lösen der dazugehörigen Wellengleichung. Dies mündet in einer quasi-exakten Lösung, dem Kompakton, welches bis auf numerische Fehler genau bestimmt werden kann. Ein anderer Ansatz, der in dieser Arbeit mehrfach verwendet wird, ist die Approximation des Gitters durch ein kontinuierliches Medium. Die daraus resultierenden Kompaktonen besitzen einen im mathematischen Sinne kompakten Definitionsbereich. Beide Methoden liefern qualitativ und quantitativ gut übereinstimmende Ergebnisse. Zusätzlich werden die dynamischen Eigenschaften von Kompaktonen mit Hilfe von direkten numerischen Simulationen der Gittergleichungen untersucht. Dabei wird ein Hauptaugenmerk auf die Entstehung von Kompaktonen unter physikalisch realisierbaren Anfangsbedingungen und ihre Kollisionen gelegt. Es wird gezeigt, dass die Wechselwirkung nicht exakt elastisch ist, sondern dass ein Teil ihrer Energie an der Position der Kollision verharrt. In endlichen Gittern führt dies zu einem multiplen Streuprozess, welcher in einem chaotischen Zustand endet. KW - Gitterdynamik KW - Hamilton KW - Compacton KW - Soliton KW - granulare Kette KW - Lattice dynamics KW - Hamiltonian KW - Compacton KW - Soliton KW - Granular chain Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48539 ER -