TY - THES A1 - Wolf, Mathias Johannes T1 - The role of partial melting on trace element and isotope systematics of granitic melts T1 - Die Bedeutung partieller Schmelzbildung für die Spurenelement- und Isotopensystematik granitischer Schmelzen N2 - Partial melting is a first order process for the chemical differentiation of the crust (Vielzeuf et al., 1990). Redistribution of chemical elements during melt generation crucially influences the composition of the lower and upper crust and provides a mechanism to concentrate and transport chemical elements that may also be of economic interest. Understanding of the diverse processes and their controlling factors is therefore not only of scientific interest but also of high economic importance to cover the demand for rare metals. The redistribution of major and trace elements during partial melting represents a central step for the understanding how granite-bound mineralization develops (Hedenquist and Lowenstern, 1994). The partial melt generation and mobilization of ore elements (e.g. Sn, W, Nb, Ta) into the melt depends on the composition of the sedimentary source and melting conditions. Distinct source rocks have different compositions reflecting their deposition and alteration histories. This specific chemical “memory” results in different mineral assemblages and melting reactions for different protolith compositions during prograde metamorphism (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). These factors do not only exert an important influence on the distribution of chemical elements during melt generation, they also influence the volume of melt that is produced, extraction of the melt from its source, and its ascent through the crust (Le Breton and Thompson, 1988). On a larger scale, protolith distribution and chemical alteration (weathering), prograde metamorphism with partial melting, melt extraction, and granite emplacement are ultimately depending on a (plate-)tectonic control (Romer and Kroner, 2016). Comprehension of the individual stages and their interaction is crucial in understanding how granite-related mineralization forms, thereby allowing estimation of the mineralization potential of certain areas. Partial melting also influences the isotope systematics of melt and restite. Radiogenic and stable isotopes of magmatic rocks are commonly used to trace back the source of intrusions or to quantify mixing of magmas from different sources with distinct isotopic signatures (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). These applications are based on the fundamental requirement that the isotopic signature in the melt reflects that of the bulk source from which it is derived. Different minerals in a protolith may have isotopic compositions of radiogenic isotopes that deviate from their whole rock signature (Ayres and Harris, 1997; Knesel and Davidson, 2002). In particular, old minerals with a distinct parent-to-daughter (P/D) ratio are expected to have a specific radiogenic isotope signature. As the partial melting reaction only involves selective phases in a protolith, the isotopic signature of the melt reflects that of the minerals involved in the melting reaction and, therefore, should be different from the bulk source signature. Similar considerations hold true for stable isotopes. N2 - Partielle Schmelzbildung ist ein zentraler Prozess für die geochemische Differentiation der Erdkruste (Vielzeuf et al., 1990). Die Umverteilung chemischer Elemente während der Schmelzbildung beeinflusst die Zusammensetzung der oberen und unteren Erdkruste entscheidend und stellt einen Mechanismus zur Konzentration und zum Transport chemischer Elemente dar. Das Verständnis der diversen Prozesse und der kontrollierenden Faktoren ist deshalb nicht nur von wissenschaftlichem Interesse sondern auch von ökonomischer Bedeutung um die Nachfrage für seltene Metalle zu decken. Die Umverteilung von Haupt- und Spurenelementen während des partiellen Aufschmelzens ist ein entscheidender Schritt für das Verständnis wie sich granitgebundene Lagerstätten bilden (Hedenquist and Lowenstern, 1994). Die Schmelzbildung und die Mobilisierung von Erz-Elementen (z. B. Sn, W, Nb, Ta) in die Schmelze hängt von der Zusammensetzung der sedimentären Ausgangsgesteine und den Schmelzbedingungen ab. Verschiedene Ausgangsgesteine haben aufgrund ihrer Ablagerungs- und Verwitterungsgeschichte unterschiedliche Zusammensetzungen. Dieses spezifische geochemische „Gedächtnis“ resultiert in unterschiedlichen Mineralparagenesen und Schmelzreaktionen in verschiedenen Ausgangsgesteinen während der prograden Metamorphose. (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). Diese Faktoren haben nicht nur einen wichtigen Einfluss auf die Verteilung chemischer Elemente während der Schmelzbildung, sie beeinflussen auch das Volumen an Schmelze, die Extraktion der Schmelze aus dem Ausgangsgestein und deren Aufstieg durch die Erdkruste (Le Breton and Thompson, 1988). Auf einer grösseren Skala unterliegen die Verteilung der Ausgangsgesteine und deren chemische Alteration (Verwitterung), die prograde Metamorphose mit partieller Schmelzbildung, Schmelzextraktion und die Platznahme granitischer Intrusionen einer plattentektonischen Kontrolle. Das Verständnis der einzelnen Schritte und deren Wechselwirkungen ist entscheidend um zu verstehen wie granitgebunden Lagerstätten entstehen und erlaubt es, das Mineralisierungspotential bestimmter Gebiete abzuschätzen. Partielles Aufschmelzen beeinflusst auch die Isotopensystematik der Schmelze und des Restites. Die Zusammensetzungen radiogener und stabiler Isotopen von magmatischen Gesteinen werden im Allgemeinen dazu verwendet um deren Ursprungsgesteine zu identifizieren oder um Mischungsprozesses von Magmen unterschiedlichen Ursprunges zu quantifizieren (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). Diese Anwendungen basieren auf der fundamentalen Annahme, dass die Isotopenzusammensetzung der Schmelze derjenigen des Ausgangsgesteines entspricht. Unterschiedliche Minerale in einem Gestein können unterschiedliche, vom Gesamtgestein abweichende, Isotopenzusammensetzungen haben (Ayres and Harris, 1997; Knesel and Davidson, 2002). Insbesondere für alte Minerale, mit einem unterschiedlichen Mutter-Tochter Nuklidverhältnis, ist eine spezifische Isotopenzusammensetzung zu erwarten. Da im partiellen Schmelzprozess nur bestimmte Minerale eines Gesteines involviert sind, entspricht die Isotopenzusammensetzung der Schmelze derjenigen der Minerale welche an der Schmelzreaktion teilnehmen. Daher sollte die Isotopenzusammensetzung der Schmelze von derjenigen des Ursprungsgesteines abweichen. Ähnliche Überlegungen treffen auch für stabile Isotopen zu. KW - geochemistry KW - trace elements KW - radiogenic isotopes KW - stable isotopes KW - resources KW - Sn Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423702 ER - TY - JOUR A1 - Owen-Smith, T. M. A1 - Ashwal, L. D. A1 - Sudo, Masafumi A1 - Trumbull, Robert B. T1 - Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Parana-Etendeka LIP JF - Journal of petrology N2 - The early Cretaceous Paraná–Etendeka Large Igneous Province is attributed to the impact of the Tristan mantle plume on the base of the continental lithosphere and the associated opening of the South Atlantic Ocean during the breakup of West Gondwana. Although the geochemistry of the Paraná and Etendeka volcanic rocks has been extensively studied, there is still disagreement on the role of the mantle plume in the production of the magma types observed, because some of their primary compositions are obscured by continental crustal contamination. However, there are related plutonic rocks that preserve mantle signatures. The Doros Complex is a shallow-level mafic intrusion within the Etendeka Province of Namibia. New 39Ar/40Ar step-heating ages for Doros gabbros from this study (weighted mean of 130 ± 1 Ma; 2σ error) confirm contemporaneity with the Paraná–Etendeka magmatic event. The Doros suite yields mean ɛNd values of +5·3 ± 1·0 (1σ; n = 11), initial 87Sr/86Sr = 0·70418 ± 0·00017 (n = 11) and 206Pb/204Pb = 18·11 ± 0·06 (n = 13) at 132 Ma. The clustering of isotopic data and trends in incompatible trace element ratios indicate that all the magmas in the complex were derived from the same mantle source components, during the same melting episode. By quantitative isotopic modelling of mixing processes, we constrain the Doros parental magma to comprise 60–80% melt of a depleted asthenospheric mantle component and 20–40% melt of a more enriched, Tristan plume-derived, asthenospheric component. No lithospheric mantle component is required to explain the Doros magma compositions. The chilled margin to the complex is the only rock type that shows evidence of significant continental crustal contamination, by assimilation of the metasedimentary host-rock upon emplacement. The identification of a substantial Tristan plume component in the Doros source confirms the integral role of the deep-seated thermal anomaly in Paraná–Etendeka magmatism. We show, in addition, that the Doros suite has consistent, strong geochemical affinities with the Tafelkop group ‘ferropicrite’ lavas of the Etendeka Province. This provides crucial evidence in support of Doros as the eruptive site for the Tafelkop lavas, thereby linking the Doros magmatism to the earliest eruptive phase in the Etendeka event. The distinctive chemistry of this magma group has been attributed to relatively deep decompression melting of pyroxenite-bearing material in the heterogeneous Tristan plume head, related to the initial impact of the plume on the base of the lithosphere. KW - radiogenic isotopes KW - ferropicrite magmas KW - layered mafic intrusion KW - Tristan mantle plume KW - Parana-Etendeka Large Igneous Province Y1 - 2017 U6 - https://doi.org/10.1093/petrology/egx021 SN - 0022-3530 SN - 1460-2415 VL - 58 IS - 3 SP - 423 EP - 442 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Ehlert, C. A1 - Frank, M. A1 - Haley, B. A. A1 - Boeniger, Urs A1 - De Deckker, P. A1 - Gingele, F. X. T1 - Current transport versus continental inputs in the eastern Indian Ocean Radiogenic isotope signatures of clay size sediments JF - Geochemistry, geophysics, geosystems N2 - Analyses of radiogenic neodymium (Nd), strontium (Sr), and lead (Pb) isotope compositions of clay-sized detrital sediments allow detailed tracing of source areas of sediment supply and present and past transport of particles by water masses in the eastern Indian Ocean. Isotope signatures in surface sediments range from -21.5 (epsilon Nd), 0.8299 ((87)Sr/(86S)r), and 19.89 ((206)Pb/(204)Pb) off northwest Australia to + 0.7 (epsilon Nd), 0.7069 ((87)Sr/(86)Sr), and 17.44 ((206)Pb/(204)Pb) southwest of Java. The radiogenic isotope signatures primarily reflect petrographic characteristics of the surrounding continental bedrocks but are also influenced by weathering-induced grain size effects of Pb and Sr isotope systems with superimposed features that are caused by current transport of clay-sized particles, as evidenced off Australia where a peculiar isotopic signature characterizes sediments underlying the southward flowing Leeuwin Current and the northward flowing West Australian Current (WAC). Gravity core FR10/95-GC17 off west Australia recorded a major isotopic change from Last Glacial Maximum values of -10 (epsilon Nd), 0.745 ((87S)r/(86)Sr), and 18.8 ((206)Pb/(204)Pb) to Holocene values of -22 (epsilon Nd), 0.8 ((87)Sr/(86)Sr), and 19.3 ((206)Pb/(204)Pb), which documents major climatically driven changes of the WAC and in local riverine particle supply from Australia during the past 20 kyr. In contrast, gravity core FR10/95-GC5 located below the present-day pathway of the Indonesian throughflow (ITF) shows a much smaller isotopic variability, indicating a relatively stable ITF hydrography over most of the past 92 kyr. Only the surface sediments differ significantly in their isotopic composition, indicating substantial changes in erosional sources attributed to a change of the current regime during the past 5 kyr. KW - Indonesian throughflow KW - Leeuwin Current KW - clay sediments KW - past circulation KW - radiogenic isotopes KW - weathering inputs Y1 - 2011 U6 - https://doi.org/10.1029/2011GC003544 SN - 1525-2027 VL - 12 IS - 12 PB - American Geophysical Union CY - Washington ER -