TY - JOUR A1 - Wood, Danielle A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - Turn the beat around: Commentary on "Slow and fast beat sequences are represented differently through space" (De Tommaso & Prpic, 2020, in Attention, Perception, & Psychophysics) JF - Attention, perception, & psychophysics : AP&P ; a journal of the Psychonomic Society, Inc. N2 - There has been increasing interest in the spatial mapping of various perceptual and cognitive magnitudes, such as expanding the spatial-numerical association of response codes (SNARC) effect into domains outside of numerical cognition. Recently, De Tommaso and Prpic (Attention, Perception, & Psychophysics, 82, 2765-2773, 2020) reported in this journal that only fast tempos over 104 beats per minute have spatial associations, with more right-sided associations and faster responses for faster tempos. After discussing the role of perceived loudness and possible response strategies, we propose and recommend methodological improvements for further research. KW - Distance effect KW - Music cognition KW - Pitch KW - magnitude association KW - Semantic KW - congruity effect KW - SMARC KW - Sound recognition KW - Spatial cognition Y1 - 2021 U6 - https://doi.org/10.3758/s13414-021-02247-8 SN - 1943-3921 SN - 1943-393X VL - 83 IS - 4 SP - 1518 EP - 1521 PB - Springer CY - New York ER - TY - GEN A1 - Fischer, Martin A1 - Winter, Bodo A1 - Felisatti, Arianna A1 - Myachykov, Andriy A1 - Jeglinski-Mende, Melinda A. A1 - Shaki, Samuel T1 - More Instructions Make Fewer Subtractions T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 763 KW - problem solving KW - addition KW - subtraction KW - cognitive bias KW - SNARC Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550086 SN - 1866-8364 VL - 12 SP - 1 EP - 3 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Fischer, Martin A1 - Winter, Bodo A1 - Felisatti, Arianna A1 - Myachykov, Andriy A1 - Jeglinski-Mende, Melinda A. A1 - Shaki, Samuel T1 - More Instructions Make Fewer Subtractions JF - Frontiers in Psychology N2 - Research on problem solving offers insights into how humans process task-related information and which strategies they use (Newell and Simon, 1972; Öllinger et al., 2014). Problem solving can be defined as the search for possible changes in one's mind (Kahneman, 2003). In a recent study, Adams et al. (2021) assessed whether the predominant problem solving strategy when making changes involves adding or subtracting elements. In order to do this, they used several examples of simple problems, such as editing text or making visual patterns symmetrical, either in naturalistic settings or on-line. The essence of the authors' findings is a strong preference to add rather than subtract elements across a diverse range of problems, including the stabilizing of artifacts, creating symmetrical patterns, or editing texts. More specifically, they succeeded in demonstrating that “participants were less likely to identify advantageous subtractive changes when the task did not (vs. did) cue them to consider subtraction, when they had only one opportunity (vs. several) to recognize the shortcomings of an additive search strategy or when they were under a higher (vs. lower) cognitive load” (Adams et al., 2021, p. 258). Addition and subtraction are generally defined as de-contextualized mathematical operations using abstract symbols (Russell, 1903/1938). Nevertheless, understanding of both symbols and operations is informed by everyday activities, such as making or breaking objects (Lakoff and Núñez, 2000; Fischer and Shaki, 2018). The universal attribution of “addition bias” or “subtraction neglect” to problem solving activities is perhaps a convenient shorthand but it overlooks influential framing effects beyond those already acknowledged in the report and the accompanying commentary (Meyvis and Yoon, 2021). Most importantly, while Adams et al.'s study addresses an important issue, their very method of verbally instructing participants, together with lack of control over several known biases, might render their findings less than conclusive. Below, we discuss our concerns that emerged from the identified biases, namely those regarding the instructions and the experimental materials. Moreover, we refer to research from mathematical cognition that provides new insights into Adams et al.'s findings. KW - problem solving KW - addition KW - subtraction KW - cognitive bias KW - SNARC Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.720616 SN - 1664-1078 VL - 12 SP - 1 EP - 3 PB - Frontiers Media SA CY - Lausanne, Schweiz ER - TY - JOUR A1 - Mioni, Giovanna A1 - Fischer, Martin H. A1 - Shaki, Samuel T1 - Heuristics and biases in the mental manipulation of magnitudes BT - Evidence from length and time production JF - Quarterly journal of experimental psychology / published in association with Experimental Psychology Society N2 - There is a debate about whether and why we overestimate addition and underestimate subtraction results (Operational Momentum or OM effect). Spatial-attentional accounts of OM compete with a model which postulates that OM reflects a weighted combination of multiple arithmetic heuristics and biases (AHAB). This study addressed this debate with the theoretically diagnostic distinction between zero problems (e.g., 3 + 0, 3 - 0) and non-zero problems (e.g., 2 + 1, 4 - 1) because AHAB, in contrast to all other accounts, uniquely predicts reverse OM for the latter problem type. In two tests (line-length production and time production), participants indeed produced shorter lines and under-estimated time intervals in non-zero additions compared with subtractions. This predicted interaction between operation and problem type extends OM to non-spatial magnitudes and highlights the strength of AHAB regarding different problem types and modalities during the mental manipulation of magnitudes. They also suggest that OM reflects methodological details, whereas reverse OM is the more representative behavioural signature of mental arithmetic. KW - Heuristics and biases KW - mental arithmetic KW - operational momentum KW - SNARC KW - effect Y1 - 2021 U6 - https://doi.org/10.1177/1747021820967663 SN - 1747-0218 SN - 1747-0226 VL - 74 IS - 3 SP - 536 EP - 547 PB - SAGE Publishing CY - Thousand Oaks, CA ER -