TY - JOUR A1 - Fischer, Eric W. A1 - Werther, Michael A1 - Bouakline, Foudhil A1 - Saalfrank, Peter T1 - A hierarchical effective mode approach to phonon-driven multilevel vibrational relaxation dynamics at surfaces JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistry N2 - We discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrodinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) method. The results of the HEM representation are compared with those obtained with a quantum-mechanical tier-model. The convergence of the HEM representation with respect to the truncation order of the hierarchy is discussed for different initial conditions of the adsorbate-surface system. The combination of the HEM representation with the ML-MCTDH method provides information on the time evolution of the system (adsorbate) and multiple effective modes of the bath (surface). This permits insight into mechanisms of vibration-phonon coupling of the adsorbate-surface system, as well as inter-mode couplings of the effective bath. Y1 - 2020 U6 - https://doi.org/10.1063/5.0017716 SN - 0021-9606 SN - 1089-7690 VL - 153 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics for azobenzene photoisomerization BT - effects of packing density on surfaces, fluorination, and excitation wavelength JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Azobenzenes easily photoswitch in solution, while their photoisomerization at surfaces is often hindered. In recent work, it was demonstrated by nonadiabatic molecular dynamics with trajectory surface hopping [Titov et al., J. Phys. Chem. Lett. 2016, 7, 3591-3596] that the experimentally observed suppression of trans -> cis isomerization yields in azobenzenes in a densely packed SAM (self-assembled monolayer) [Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831-1838] is dominated by steric hindrance. In the present work, we systematically study by ground-state Langevin and nonadiabatic surface hopping dynamics, the effects of decreasing packing density on (i) UV/vis absorption spectra, (ii) trans -> cis isomerization yields, and (iii) excited-state lifetimes of photoexcited azobenzene. Within the quantum mechanics/ molecular mechanics models adopted here, we find that above a packing density of similar to 3 molecules/nm(2), switching yields are strongly reduced, while at smaller packing densities, the "monomer limit" is quickly approached. The UV/vis absorption spectra, on the other hand, depend on packing density over a larger range (down to at least similar to 1 molecule/nm(2)). Trends for excited-state lifetimes are less obvious, but it is found that lifetimes of pi pi* excited states decay monotonically with decreasing coverage. Effects of fluorination of the switches are also discussed for single, free molecules. Fluorination leads to comparatively large trans -> cis yields, in combination with long pi pi* lifetimes. Furthermore, for selected systems, also the effects of n pi* excitation at longer excitation wavelengths have been studied, which is found to enhance trans -> cis yields for free molecules but can lead to an opposite behavior in densely packed SAMs. KW - Computational chemistry KW - Energy KW - Molecules KW - Monomers KW - Oligomers Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c08052 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 48 SP - 26287 EP - 26295 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - von Zander, Robert Edler A1 - Saalfrank, Peter T1 - On the borate-catalyzed electrochemical reduction of phosphine oxide BT - a computational study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Recently, Nocera and co-workers (J. Am. Chem. Soc. 2018, 140, 13711) demonstrated that triaryl borate Lewis acids facilitate the direct electrochemical reduction of triphenylphosphine oxide (TPPO) to triphenylphosphine (TPP). In the present contribution, we report a quantum chemical study unravelling details of the reaction, which also supports the proposed ECrECi mechanism. Alternative electrochemical routes to TPPO reduction facilitated by other Lewis acids (CH3+), or by photocatalysis at semiconductor surfaces, are also briefly discussed. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c07805 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 49 SP - 10239 EP - 10245 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Saalfrank, Peter A1 - Bedurke, Florian A1 - Heide, Chiara A1 - Klamroth, Tillmann A1 - Klinkusch, Stefan A1 - Krause, Pascal A1 - Nest, Mathias A1 - Tremblay, Jean Christophe ED - Ruud, Kenneth ED - Brändas, Erkki J. T1 - Molecular attochemistry: correlated electron dynamics driven by light T2 - Advances in quantum chemistry N2 - Modern laser technology and ultrafast spectroscopies have pushed the timescales for detecting and manipulating dynamical processes in molecules from the picosecond over femtosecond domains, to the attosecond regime (1 as = 10(-18) s). This way, real-time dynamics of electrons after their photoexcitation can be probed and manipulated. In particular, experiments are moving more and more from atomic and solid state systems to molecules, opening the fields of "molecular electron dynamics" and "attosecond chemistry." Also on the theory side, powerful quantum dynamical tools have been developed to rationalize experiments on ultrafast electron dynamics in molecular species.
In this contribution, we concentrate on theoretical aspects of ultrafast electron dynamics in molecules, mostly driven by lasers. The dynamics will be described with the help of wavefunction-based ab initio methods such as time-dependent configuration interaction (TD-CI) or the multiconfigurational time-dependent Hartree-Fock (MCTDHF) methods. Besides a survey of the methods and their extensions toward, e.g., treatment of ionization, laser pulse optimization, and open quantum systems, two specific examples of applications will be considered: The creation and/or dynamical fate of electronic wavepackets, and the nonlinear optical response to laser pulse excitation in molecules by high harmonic generation (HHG). KW - dipole approximation KW - electron dynamics KW - electronic wavepackets KW - high harmonic generation KW - ionization KW - optimal control theory KW - time-dependent Schrödinger equation Y1 - 2020 SN - 978-0-12-819757-8 U6 - https://doi.org/10.1016/bs.aiq.2020.03.001 SN - 0065-3276 VL - 81 SP - 15 EP - 50 PB - Elsevier CY - Amsterdam [u.a.] ER -