TY - JOUR A1 - Richardson, Noel D. A1 - Shenar, Tomer A1 - Roy-Loubier, Olivier A1 - Schaefer, Gail A1 - Moffat, Anthony F. J. A1 - St-Louis, Nicole A1 - Gies, Douglas R. A1 - Farrington, Chris A1 - Hill, Grant M. A1 - Williams, Peredur M. A1 - Gordon, Kathryn A1 - Pablo, Herbert A1 - Ramiaramanantsoa, Tahina T1 - The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138 JF - Monthly notices of the Royal Astronomical Society N2 - We report on interferometric observations with the CHARAArray of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR, 137 = 0.59 +/- 0.04; fWR, 138 = 0.67 +/- 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edgeon. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane. KW - binaries: visual KW - stars: individual: WR 137 KW - stars: individual: WR 138 KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1585 SN - 0035-8711 SN - 1365-2966 VL - 461 SP - 4115 EP - 4124 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gimenez-Garcia, Ana A1 - Shenar, Tomer A1 - Torrejon, J. M. A1 - Oskinova, Lida A1 - Martinez-Nunez, S. A1 - Hamann, Wolf-Rainer A1 - Rodes-Roca, J. J. A1 - González-Galan, A. A1 - Alonso-Santiago, J. A1 - González-Fernández, C. A1 - Bernabeu, Guillermo A1 - Sander, Andreas Alexander Christoph T1 - Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries JF - Siberian Mathematical Journal N2 - Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters. KW - accretion, accretion disks KW - methods: observational KW - techniques: spectroscopic KW - stars: atmospheres KW - X-rays: binaries KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527551 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hamaguchi, K. A1 - Oskinova, Lida A1 - Russell, C. M. P. A1 - Petre, R. A1 - Enoto, T. A1 - Morihana, K. A1 - Ishida, M. T1 - DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40% or similar to 70% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past. KW - blue stragglers KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - stars: winds, outflows KW - white dwarfs KW - X-rays: stars Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/832/2/140 SN - 0004-637X SN - 1538-4357 VL - 832 SP - 33 EP - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toala, Jesús Alberto A1 - Oskinova, Lida A1 - Gonzalez-Galan, Ana A1 - Guerrero, Martín A. A1 - Ignace, R. A1 - Pohl, Martin T1 - X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF zeta OPH AND BD+43 degrees 3654 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars zeta Oph by Chandra and Suzaku and of BD+43 degrees 3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of zeta Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T approximate to 2 x 10(6) K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43 degrees 3654 is puzzling, as non-thermal emission has been reported in a previous work for this source. KW - stars: individual (zeta Oph, BD+43 degrees 3654) KW - stars: winds, outflows Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/821/2/79 SN - 0004-637X SN - 1538-4357 VL - 821 PB - IOP Publ. Ltd. CY - Bristol ER -