TY - THES A1 - Schütte, Moritz T1 - Evolutionary fingerprints in genome-scale networks T1 - Evolutionäre Spuren in genomskaligen Netzwerken N2 - Mathematical modeling of biological phenomena has experienced increasing interest since new high-throughput technologies give access to growing amounts of molecular data. These modeling approaches are especially able to test hypotheses which are not yet experimentally accessible or guide an experimental setup. One particular attempt investigates the evolutionary dynamics responsible for today's composition of organisms. Computer simulations either propose an evolutionary mechanism and thus reproduce a recent finding or rebuild an evolutionary process in order to learn about its mechanism. The quest for evolutionary fingerprints in metabolic and gene-coexpression networks is the central topic of this cumulative thesis based on four published articles. An understanding of the actual origin of life will probably remain an insoluble problem. However, one can argue that after a first simple metabolism has evolved, the further evolution of metabolism occurred in parallel with the evolution of the sequences of the catalyzing enzymes. Indications of such a coevolution can be found when correlating the change in sequence between two enzymes with their distance on the metabolic network which is obtained from the KEGG database. We observe that there exists a small but significant correlation primarily on nearest neighbors. This indicates that enzymes catalyzing subsequent reactions tend to be descended from the same precursor. Since this correlation is relatively small one can at least assume that, if new enzymes are no "genetic children" of the previous enzymes, they certainly be descended from any of the already existing ones. Following this hypothesis, we introduce a model of enzyme-pathway coevolution. By iteratively adding enzymes, this model explores the metabolic network in a manner similar to diffusion. With implementation of an Gillespie-like algorithm we are able to introduce a tunable parameter that controls the weight of sequence similarity when choosing a new enzyme. Furthermore, this method also defines a time difference between successive evolutionary innovations in terms of a new enzyme. Overall, these simulations generate putative time-courses of the evolutionary walk on the metabolic network. By a time-series analysis, we find that the acquisition of new enzymes appears in bursts which are pronounced when the influence of the sequence similarity is higher. This behavior strongly resembles punctuated equilibrium which denotes the observation that new species tend to appear in bursts as well rather than in a gradual manner. Thus, our model helps to establish a better understanding of punctuated equilibrium giving a potential description at molecular level. From the time-courses we also extract a tentative order of new enzymes, metabolites, and even organisms. The consistence of this order with previous findings provides evidence for the validity of our approach. While the sequence of a gene is actually subject to mutations, its expression profile might also indirectly change through the evolutionary events in the cellular interplay. Gene coexpression data is simply accessible by microarray experiments and commonly illustrated using coexpression networks where genes are nodes and get linked once they show a significant coexpression. Since the large number of genes makes an illustration of the entire coexpression network difficult, clustering helps to show the network on a metalevel. Various clustering techniques already exist. However, we introduce a novel one which maintains control of the cluster sizes and thus assures proper visual inspection. An application of the method on Arabidopsis thaliana reveals that genes causing a severe phenotype often show a functional uniqueness in their network vicinity. This leads to 20 genes of so far unknown phenotype which are however suggested to be essential for plant growth. Of these, six indeed provoke such a severe phenotype, shown by mutant analysis. By an inspection of the degree distribution of the A.thaliana coexpression network, we identified two characteristics. The distribution deviates from the frequently observed power-law by a sharp truncation which follows after an over-representation of highly connected nodes. For a better understanding, we developed an evolutionary model which mimics the growth of a coexpression network by gene duplication which underlies a strong selection criterion, and slight mutational changes in the expression profile. Despite the simplicity of our assumption, we can reproduce the observed properties in A.thaliana as well as in E.coli and S.cerevisiae. The over-representation of high-degree nodes could be identified with mutually well connected genes of similar functional families: zinc fingers (PF00096), flagella, and ribosomes respectively. In conclusion, these four manuscripts demonstrate the usefulness of mathematical models and statistical tools as a source of new biological insight. While the clustering approach of gene coexpression data leads to the phenotypic characterization of so far unknown genes and thus supports genome annotation, our model approaches offer explanations for observed properties of the coexpression network and furthermore substantiate punctuated equilibrium as an evolutionary process by a deeper understanding of an underlying molecular mechanism. N2 - Die biologische Zelle ist ein sehr kompliziertes Gebilde. Bei ihrer Betrachtung gilt es, das Zusammenspiel von Tausenden bis Millionen von Genen, Regulatoren, Proteinen oder Molekülen zu beschreiben und zu verstehen. Durch enorme Verbesserungen experimenteller Messgeräte gelingt es mittlerweile allerdings in geringer Zeit enorme Datenmengen zu messen, seien dies z.B. die Entschlüsselung eines Genoms oder die Konzentrationen der Moleküle in einer Zelle. Die Systembiologie nimmt sich dem Problem an, aus diesem Datenmeer ein quantitatives Verständnis für die Gesamtheit der Wechselwirkungen in der Zelle zu entwickeln. Dabei stellt die mathematische Modellierung und computergestützte Analyse ein eminent wichtiges Werkzeug dar, lassen sich doch am Computer in kurzer Zeit eine Vielzahl von Fällen testen und daraus Hypothesen generieren, die experimentell verifiziert werden können. Diese Doktorarbeit beschäftigt sich damit, wie durch mathematische Modellierung Rückschlüsse auf die Evolution und deren Mechanismen geschlossen werden können. Dabei besteht die Arbeit aus zwei Teilen. Zum Einen wurde ein Modell entwickelt, dass die Evolution des Stoffwechsels nachbaut. Der zweite Teil beschäftigt sich mit der Analyse von Genexpressionsdaten, d.h. der Stärke mit der ein bestimmtes Gen in ein Protein umgewandelt, "exprimiert", wird. Der Stoffwechsel bezeichnet die Gesamtheit der chemischen Vorgänge in einem Organismus; zum Einen werden Nahrungsstoffe für den Organismus verwertbar zerlegt, zum Anderen aber auch neue Stoffe aufgebaut. Da für nahezu jede chemische Reaktion ein katalysierendes Enzym benötigt wird, ist davon auszugehen, dass sich der Stoffwechsel parallel zu den Enzymen entwickelt hat. Auf dieser Annahme basiert das entwickelte Modell zur Enzyme-Stoffwechsel-Koevolution. Von einer Anfangsmenge von Enzymen und Molekülen ausgehend, die etwa in einer primitiven Atmosphäre vorgekommen sind, werden sukzessive Enzyme und die nun katalysierbaren Reaktionen hinzugefügt, wodurch die Stoffwechselkapazität anwächst. Die Auswahl eines neuen Enzyms geschieht dabei in Abhängigkeit von der Ähnlichkeit mit bereits vorhandenen und ist so an den evolutionären Vorgang der Mutation angelehnt: je ähnlicher ein neues Enzym zu den vorhandenen ist, desto schneller kann es hinzugefügt werden. Dieser Vorgang wird wiederholt, bis der Stoffwechsel die heutige Form angenommen hat. Interessant ist vor allem der zeitliche Verlauf dieser Evolution, der mittels einer Zeitreihenanalyse untersucht wird. Dabei zeigt sich, dass neue Enzyme gebündelt in Gruppen kurzer Zeitfolge auftreten, gefolgt von Intervallen relativer Stille. Dasselbe Phänomen kennt man von der Evolution neuer Arten, die ebenfalls gebündelt auftreten, und wird Punktualismus genannt. Diese Arbeit liefert somit ein besseres Verständnis dieses Phänomens durch eine Beschreibung auf molekularer Ebene. Im zweiten Projekt werden Genexpressionsdaten von Pflanzen analysiert. Einerseits geschieht dies mit einem eigens entwickelten Cluster-Algorithmus. Hier läßt sich beobachten, dass Gene mit einer ähnlichen Funktion oft auch ein ähnliches Expressionsmuster aufweisen. Das Clustering liefert einige Genkandidaten, deren Funktion bisher unbekannt war, von denen aber nun vermutet werden konnte, dass sie enorm wichtig für das Wachstum der Pflanze sind. Durch Experimente von Pflanzen mit und ohne diese Gene zeigte sich, dass sechs neuen Genen dieses essentielle Erscheinungsbild zugeordnet werden kann. Weiterhin wurden Netzwerke der Genexpressionsdaten einer Pflanze, eines Pilzes und eines Bakteriums untersucht. In diesen Netzwerken werden zwei Gene verbunden, falls sie ein sehr ähnliches Expressionsprofil aufweisen. Nun zeigten diese Netzwerke sehr ähnliche und charakteristische Eigenschaften auf. Im Rahmen dieser Arbeit wurde daher ein weiteres evolutionäres Modell entwickelt, das die Expressionsprofile anhand von Duplikation, Mutation und Selektion beschreibt. Obwohl das Modell auf sehr simplen Eigenschaften beruht, spiegelt es die beobachteten Eigenschaften sehr gut wider, und es läßt sich der Schluss ziehen, dass diese als Resultat der Evolution betrachtet werden können. Die Ergebnisse dieser Arbeiten sind als Doktorarbeit in kumulativer Form bestehend aus vier veröffentlichten Artikeln vereinigt. KW - Systembiologie KW - Modellierung KW - Evolution KW - Stoffwechsel KW - Gen-Koexpression KW - Systems Biology KW - Modeling KW - Evolution KW - Metabolism KW - Gene co-expression Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57483 ER - TY - THES A1 - Andorf, Sandra T1 - A systems biological approach towards the molecular basis of heterosis in Arabidopsis thaliana T1 - Ein systembiologischer Ansatz für das Verständnis der molekularen Grundlagen von Heterosis in Arabidopsis thaliana N2 - Heterosis is defined as the superiority in performance of heterozygous genotypes compared to their corresponding genetically different homozygous parents. This phenomenon is already known since the beginning of the last century and it has been widely used in plant breeding, but the underlying genetic and molecular mechanisms are not well understood. In this work, a systems biological approach based on molecular network structures is proposed to contribute to the understanding of heterosis. Hybrids are likely to contain additional regulatory possibilities compared to their homozygous parents and, therefore, they may be able to correctly respond to a higher number of environmental challenges, which leads to a higher adaptability and, thus, the heterosis phenomenon. In the network hypothesis for heterosis, presented in this work, more regulatory interactions are expected in the molecular networks of the hybrids compared to the homozygous parents. Partial correlations were used to assess this difference in the global interaction structure of regulatory networks between the hybrids and the homozygous genotypes. This network hypothesis for heterosis was tested on metabolite profiles as well as gene expression data of the two parental Arabidopsis thaliana accessions C24 and Col-0 and their reciprocal crosses. These plants are known to show a heterosis effect in their biomass phenotype. The hypothesis was confirmed for mid-parent and best-parent heterosis for either hybrid of our experimental metabolite as well as gene expression data. It was shown that this result is influenced by the used cutoffs during the analyses. Too strict filtering resulted in sets of metabolites and genes for which the network hypothesis for heterosis does not hold true for either hybrid regarding mid-parent as well as best-parent heterosis. In an over-representation analysis, the genes that show the largest heterosis effects according to our network hypothesis were compared to genes of heterotic quantitative trait loci (QTL) regions. Separately for either hybrid regarding mid-parent as well as best-parent heterosis, a significantly larger overlap between the resulting gene lists of the two different approaches towards biomass heterosis was detected than expected by chance. This suggests that each heterotic QTL region contains many genes influencing biomass heterosis in the early development of Arabidopsis thaliana. Furthermore, this integrative analysis led to a confinement and an increased confidence in the group of candidate genes for biomass heterosis in Arabidopsis thaliana identified by both approaches. N2 - Als Heterosis-Effekt wird die Überlegenheit in einem oder mehreren Leistungsmerkmalen (z.B. Blattgröße von Pflanzen) von heterozygoten (mischerbigen) Nachkommen über deren unterschiedlich homozygoten (reinerbigen) Eltern bezeichnet. Dieses Phänomen ist schon seit Beginn des letzten Jahrhunderts bekannt und wird weit verbreitet in der Pflanzenzucht genutzt. Trotzdem sind die genetischen und molekularen Grundlagen von Heterosis noch weitestgehend unbekannt. Es wird angenommen, dass heterozygote Individuen mehr regulatorische Möglichkeiten aufweisen als ihre homozygoten Eltern und sie somit auf eine größere Anzahl an wechselnden Umweltbedingungen richtig reagieren können. Diese erhöhte Anpassungsfähigkeit führt zum Heterosis-Effekt. In dieser Arbeit wird ein systembiologischer Ansatz, basierend auf molekularen Netzwerkstrukturen verfolgt, um zu einem besseren Verständnis von Heterosis beizutragen. Dazu wird eine Netzwerkhypothese für Heterosis vorgestellt, die vorhersagt, dass die heterozygoten Individuen, die Heterosis zeigen, mehr regulatorische Interaktionen in ihren molekularen Netzwerken aufweisen als die homozygoten Eltern. Partielle Korrelationen wurden verwendet, um diesen Unterschied in den globalen Interaktionsstrukturen zwischen den Heterozygoten und ihren homozygoten Eltern zu untersuchen. Die Netzwerkhypothese wurde anhand von Metabolit- und Genexpressionsdaten der beiden homozygoten Arabidopsis thaliana Pflanzenlinien C24 und Col-0 und deren wechselseitigen Kreuzungen getestet. Arabidopsis thaliana Pflanzen sind bekannt dafür, dass sie einen Heterosis-Effekt im Bezug auf ihre Biomasse zeigen. Die heterozygoten Pflanzen weisen bei gleichem Alter eine höhere Biomasse auf als die homozygoten Pflanzen. Die Netzwerkhypothese für Heterosis konnte sowohl im Bezug auf mid-parent Heterosis (Unterschied in der Leistung des Heterozygoten im Vergleich zum Mittelwert der Eltern) als auch auf best-parent Heterosis (Unterschied in der Leistung des Heterozygoten im Vergleich zum Besseren der Eltern) für beide Kreuzungen für die Metabolit- und Genexpressionsdaten bestätigt werden. In einer Überrepräsentations-Analyse wurden die Gene, für die die größte Veränderung in der Anzahl der regulatorischen Interaktionen, an denen sie vermutlich beteiligt sind, festgestellt wurde, mit den Genen aus einer quantitativ genetischen (QTL) Analyse von Biomasse-Heterosis in Arabidopsis thaliana verglichen. Die ermittelten Gene aus beiden Studien zeigen eine größere Überschneidung als durch Zufall erwartet. Das deutet darauf hin, dass jede identifizierte QTL-Region viele Gene, die den Biomasse-Heterosis-Effekt in Arabidopsis thaliana beeinflussen, enthält. Die Gene, die in den Ergebnislisten beider Analyseverfahren überlappen, können mit größerer Zuversicht als Kandidatengene für Biomasse-Heterosis in Arabidopsis thaliana betrachtet werden als die Ergebnisse von nur einer Studie. KW - Systembiologie KW - Heterosis KW - Molekulare Profildaten KW - Integrative Analyse KW - Systems biology KW - Heterosis KW - Molecular profile data KW - Integrative analysis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51173 ER -