TY - JOUR A1 - Wu, Yunhua A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - Direct electron transfer of Agrocybe aegerita peroxygenase at electrodes modified with chitosan-capped Au nanoparticles and its bioelectrocatalysis to aniline JF - Sensors and actuators : B, Chemical N2 - Three different sizes of chitosan-capped Au nanoparticles were synthesized and were used to incorporate Agrocybe aegerita peroxygenase (AaeAPO) onto the surface of glassy carbon electrode. The direct electron transfer of AaeAPO was achieved in all films. The highest amount of electroactive enzyme and highest electron transfer rate constant k(s) of AaeAPO were obtained in the film with the smallest size of chitosan-capped Au nanoparticles. In anaerobic solutions, quasi-reversible oxidation and reduction are obtained with a formal potential of -0.280V vs. Ag/AgCl 1 M KCl in 100 mM (pH 7.0) PBS at scan rate of 1 V s(-1). Bioelectrocatalytic reduction currents can be obtained with the AaeAPO-modified electrode on addition of hydrogen peroxide. This reaction was suppressed when sodium azide, an inhibitor of AaeAPO, was present. Furthermore, the peroxide-dependent conversion of aniline was characterized and it was found that a polymer product via p-aminophenol is formed. And the AaeAPO biosensor was applied to determine aniline and p-aminophenol. KW - Agrocybe aegerita peroxygenase KW - Au nanoparticles KW - Direct electron transfer KW - Aniline biosensor KW - Bioelectrocatalysis Y1 - 2011 U6 - https://doi.org/10.1016/j.snb.2011.09.090 SN - 0925-4005 VL - 160 IS - 1 SP - 1419 EP - 1426 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Yarman, Aysu A1 - Nagel, Thomas A1 - Gajovic-Eichelmann, Nenad A1 - Fischer, Anna A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - We report on the redox behaviour of the microperoxidase-11 (MP-11) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. MP-11 contains a covalently bound heme c as the redox active group that exchanges electrons with the electrode via the gold nanoparticles. Electroactive surface concentration of MP-11 at high scan rate is between 350+/-50 pmol cm(-2), which reflects a multilayer process. The formal potential (E degrees') of MP-11 in the gold nanoparticles-chitosan film was estimated to be -(267.7+/-2.9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) starts at 1.21 s(-1) and levels off at 6.45 s(-1) in the scan rate range from 0.1 to 2.0 V s(-1). Oxidation and reduction of MP-11 by hydrogen peroxide and superoxide, respectively have been coupled to the direct electron transfer of MP-11. KW - Microperoxidase KW - Direct electron transfer KW - Nanoparticles KW - Hydrogen peroxide KW - Superoxide KW - Bioelectrocatalysis Y1 - 2011 U6 - https://doi.org/10.1002/elan.201000535 SN - 1040-0397 VL - 23 IS - 3 SP - 611 EP - 618 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Sarauli, David A1 - Xu, Chenggang A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Lisdat, Fred T1 - Differently substituted sulfonated polyanilines - the role of polymer compositions in electron transfer with pyrroloquinoline quinone-dependent glucose dehydrogenase JF - Acta biomaterialia N2 - Sulfonated polyanilines have become promising building blocks in the construction of biosensors, and therefore we use here differently substituted polymer forms to investigate the role of their structural composition and properties in achieving a direct electron transfer with the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). To this end, new copolymers containing different ratios of 2-methoxyaniline-5-sulfonic acid (MAS), 3-aminobenzenesulfonic acid (ABS) and 3-aminobenzoic acid (AB) units have been chemically synthesized. All polymers have been studied with respect to their ability to react directly with PQQ-GDH. This interaction has been monitored initially in solution, and subsequently on electrode surfaces. The results show that only copolymers with MAS and aniline units can directly react with PQQ-GDH in solution; the background can be mainly ascribed to the emeraldine salt redox state of the polymer, allowing rather easy reduction. However, when polymers and the enzyme are immobilized on the surface of carbon nanotube-containing electrodes, direct bioelectrocatalysis is also feasible in the case of copolymers composed of ABS/AB and MAS/AB units, existing initially in pernigraniline base form. This verifies that a productive interaction of the enzyme with differently substituted polymers is feasible when the electrode potential can be used to drive the reaction towards the oxidation of the substrate-reduced enzyme. These results clearly demonstrate that enzyme electrodes based on sulfonated polyanilines and direct bioelectrocatalysis can be successfully constructed. KW - Sulfonated polyaniline KW - PQQ-dependent glucose dehydrogenase KW - Direct electron transfer KW - Immobilization KW - Bioelectrocatalysis Y1 - 2013 U6 - https://doi.org/10.1016/j.actbio.2013.06.008 SN - 1742-7061 VL - 9 IS - 9 SP - 8290 EP - 8298 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Frasca, Stefano A1 - Milan, Anabel Molero A1 - Guiet, Amandine A1 - Goebel, Caren A1 - Perez-Caballero, Fernando A1 - Stiba, Konstanze A1 - Leimkühler, Silke A1 - Fischer, Anna A1 - Wollenberger, Ursula T1 - Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes-Electrochemical characterization and direct enzyme communication JF - ELECTROCHIMICA ACTA N2 - In this paper we report immobilization and bioelectrocatalysis of human sulfite oxidase (hSO) on nanostructured antimony doped tin oxide (ATO) thin film electrodes. Two types of ATO thin film electrodes were prepared via evaporation induced self-assembly of ATO nanoparticle sols. The use of a porogen results in different porosity and film thickness. Nevertheless both electrode types reveal similar quasi reversible electrochemical behavior for positive and negatively charged small mediators. Facile and durable immobilization of catalytically active enzyme in a direct electron transfer configuration was achieved without further chemical modification of the ATO surfaces. Interestingly, the binding of hSO onto the ATO surface seems to be not only of electrostatic nature, but also originates from a strong interaction between the histidine-tag of the enzyme and the supporting material. This is suggested from stable sulfite dependent bioelectrocatalytic signals at high ionic strength and imidazole desorption experiments. As such, ATO appears as a promising conductive platform for the immobilization of complex enzymes and their application in bioelectrocatalysis. (C) 2013 Elsevier Ltd. All rights reserved. KW - Antimony doped tin dioxide KW - Sulfite oxidase KW - Direct electrochemistry KW - Biosensor KW - Bioelectrocatalysis Y1 - 2013 U6 - https://doi.org/10.1016/j.electacta.2013.03.144 SN - 0013-4686 SN - 1873-3859 VL - 110 IS - 2 SP - 172 EP - 180 PB - PERGAMON-ELSEVIER SCIENCE LTD CY - OXFORD ER - TY - JOUR A1 - Zeng, Ting A1 - Frasca, Stefano A1 - Rumschöttel, Jens A1 - Koetz, Joachim A1 - Leimkühler, Silke A1 - Wollenberger, Ursula T1 - Role of Conductive Nanoparticles in the Direct Unmediated Bioelectrocatalysis of Immobilized Sulfite Oxidase JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis KW - Direct electron transfer KW - Protein voltammetry KW - Human sulfite oxidase KW - Bioelectrocatalysis KW - Nanoparticles Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600246 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2303 EP - 2310 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Cazelles, R. A1 - Lalaoui, N. A1 - Hartmann, Tobias A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Antonietti, Markus A1 - Cosnier, S. T1 - Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET) JF - Polymer : the international journal for the science and technology of polymers KW - Bioinformatic KW - Bioelectrocatalysis KW - Electron transfer KW - Dehydrogenase KW - Nicotinamide Y1 - 2016 U6 - https://doi.org/10.1016/j.bios.2016.04.078 SN - 0956-5663 SN - 1873-4235 VL - 85 SP - 90 EP - 95 PB - Elsevier CY - Oxford ER -