TY - THES A1 - Meeßen, Christian T1 - The thermal and rheological state of the Northern Argentinian foreland basins T1 - Der thermische und rheologische Zustand der Nordargentinischen Vorlandbecken N2 - The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal décollement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the Río de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the décollements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower décollement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina. N2 - Das Vorland der südamerikanischen Anden ist durch lateral variierende Deformationsregimes des östlichen Vorlands geprägt. Dabei treten zwei grundlegend verschiedene Endglieder mit charakteristischer Architektur auf: flach abgescherte Falten- und Überschiebungsgürtel einerseits und Vorland-Sockelüberschiebungen ("zerbrochenes Vorland") andererseits. Das morphologische Erscheinungsbild der Falten- und Überschiebungsgürtel entspricht lateral ausgedehnten, dicht aneinander gereihten Abfolgen von Hügeln und Tälern. Die Hügel werden durch eine darunter liegende Überschiebung definiert, die in einem subhorizontalen Abscherhorizont in 10 bis 20 km Tiefe endet. Sockelüberschiebungen hingegen sind in Gebieten mit geringer Sedimentmächtigkeit zu finden und sind durch weit auseinander liegende Erhebungen charakterisiert, welche von steil einfallenden, reaktivierten krustenskaligen Verwerfungen begrenzt werden. Als Ursachen der beobachteten Deformationsvariationen wurden präexistente Schwächezonen, Sedimentmächtigkeiten, Lithosphärenverdickung, Vulkanismus oder kompositionelle Eigenschaften aufgeführt. Diese Vorschläge waren überwiegend konzeptuell und meist auf Grundlage von Feldbeobachtungen oder synthetischen numerischen, thermo-mechanischen Modelle abgeleitet. Die vorliegende Dissertation beleuchtet zum ersten mal die Ursachen der beobachteten Deformationsstile aus der Perspektive von dreidimensionaler, Daten-integrativer Modellierung. Durch die Integration voneinander unabhängiger Daten erlaubt diese Art der Beschreibung des physikalischen Zustands der Lithosphäre die Erlangung zusätzliche Hinweise auf die zugrundeliegenden Ursachen der verschiedenen Derformationsregimes. Für eine solche Studie bietet sich Nord-Argentinien an, da dort beide Vorland-Endglieder vorzufinden sind. Die dafür im wesentlichen durchgeführten Arbeitsschritte beinhalten die Erstellung eines strukturellen Dichtemodells des Untersuchungsgebiets, die Berechnung des 3D stationären thermischen Feldes, sowie die Analyse der rheologischen Eigenschaften der Lithosphäre. Das datenbasierte strukturelle Dichtemodell ist mit verschiedenen geologischen und geophysikalischen Beobachtungen sowie dem Bouguer-Schwerefeld konsistent. Dieses Modell bildet die primären Dichtekontraste der oberen 200 km der Lithosphäre ab und differenziert Körper für die Sedimente, die kristalline Kruste, den lithosphärischen Mantel, und die subduzierende Nazca-Platte. Um die krusteninterne Dichteverteilung zu erhalten wurde ein automatisierter Inversionsprozess entworfen der es erlaubt eine leichtere Oberkruste und eine schwerere Unterkruste geometrisch zu definieren. Die Modellierung zeigt, dass die Kruste in Nord-Argentinien durch eine leichtere Oberkruste (2800 kg/m³) und eine dichtere Unterkruste (3100 kg/m³) repräsentiert werden kann. Das Transbrasilianische Linement, welches das Pampia Terran im Westen vom Río de La Plata Kraton im Osten trennt, ist durch eine im Vergleich zur Umgebung geringere durchschnittliche Krustendichte charakterisiert. In einem Exkurs wird anschließend demonstriert, dass die hier entwickelte Inversionsmethodik zur Ermittlung von intrakrustalen Dichtekontrasten auch im obersten lithosphärischen Mantel angewandt werden kann. Dichten zwischen der Kruste-Mantel-Grenze und etwa 50\,km Tiefe sind besonders schwer zu bestimmen, da tomographische Modelle die Geschwindigkeitsvariationen von seismischen Wellen in diesen Bereichen nicht auflösen. In Tan u.a. (2018) demonstrieren wir, dass die Inversionsmethode Dichteverläufe mit einer lateralen Ausdehnung von 125 km oder weniger ermitteln kann, und somit einen wichtigen Beitrag zur Bestimmung von subkrustalen Dichteverteilungen im Mantel liefert. Wegen der genetischen Verbindung zwischen Subduktion, Orogenese und Retroarc Vorlandbecken stellt sich die Frage, ob die Annahme eines stationären thermischen Feldes für solch ein dynamisches Modelliergebiet zulässig ist. Um diese Frage zu beantworten wurde zum einen der Einfluss von Subduktion auf das konduktive thermische Feld auf die kontinentale Lithosphäre untersucht. Zum anderen wurde die Abweichung zwischen transientem und stationären thermischen Feld eines gekoppelten geodynamischen Modells untersucht. Beide Untersuchungen weisen darauf hin, dass die Annahme eines stationären thermischen Felds für den Großteil des Modelliergebiets zulässig ist. Im orogenen Keil, in dem diese Annahme nicht gilt, wurde das transiente thermische Feld mithilfe der erfolgten Untersuchungen abgeschätzt. Entsprechend kann für das Arbeitsgebiet im Vorland das strukturelle Modell aus dem ersten Schritt zur Berechnung des stationären 3D konduktiven thermischen Feldes herangezogen werden. Basierend auf der ermittelten Dichte- und Temperatur-Konfigurationen konnte anschließend die rheologische Konfiguration berechnet werden. Die rheologischen Analysen zeigen, dass die Lithosphäre in Falten- und Überschiebungsgürteln nur eine gerine Festigkeit besitzt und die Kruste Großteil zur integrierten Festigkeit beiträgt. Das benachbarte Vorlandbecken jedoch weist eine vollständig gekoppelte und starke Lithosphäre auf, weshalb Krustenverkürzung nur im vergleichsweise schwachen orogenen Keil aufgenommen werden kann. Daher komme ich zu der Schlussfolgerung, dass die Abscherhorizonte der Falten- und Überschiebungsgürtel die oberflächennahe Fortsetzung von Scherzonen in der duktilen Kruste unterhalb des Orogens sind. Die Lokalisation der Transferzonen zwischen der duktilen Kruste und dem Abscherhorizont sind dabei maßgeblich durch präexistente Schwächezonen in der Kruste beeinflusst. Im zerbrochenen Vorland der Sierras Pampeanas ist die Lithosphäre vollständig gekoppelt und durch einen Mantel hoher Festigkeit charakterisiert. Die sehr hohe integrierte lithosphärische Festigkeit des zerbrochenen Vorlands verhindert die Bildung von Störungen durch tektonische Kräfte. Selbst krustenskalige Schwächezonen können die Festigkeit nicht ausreichend reduzieren, weshalb eine thermische Schwächung benötigt wird. Daher spielt der Magmatismus, der in direkter Nachbarschaft zu den Schwächezonen in der Sierras Pampeanas nachgewiesen wurde, eine Schlüsselrolle in der Entstehung des zerbrochenen Vorlands. Diese Hypothese erklärt die große räumliche Distanz zwischen den Vorlandsockelüberschiebungen, sowie die beobachtete zeitliche Verzögerung zwischen Magmatismus und Hebung der Gebirgskämme. Die vorliegende Studie kann somit aufgrund Daten-integrativer Modellierung einen kausalen Zusammenhang zwischen der Lithosphärenstruktur, den beobachteten Deformationsmechanismen und unabhängigen geologischen Beobachtungen herstellen. KW - Argentina KW - Rheology KW - Foreland basin KW - Foreland basins KW - Density modelling KW - Chaco-Paraná basin KW - Andes KW - Argentinien KW - Rheologie KW - Vorlandbecken KW - Dichtemodellierung KW - Chaco-Paraná Becken KW - Anden Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439945 ER - TY - THES A1 - Rodriguez Piceda, Constanza T1 - Thermomechanical state of the southern Central Andes T1 - Thermomechanischer Zustand der südlichen Zentral Anden BT - implications for active deformation patterns in the transition from flat to steep subduction BT - Implikationen für aktive Deformationsmuster beim Übergang von flacher zu steiler Subduktion N2 - The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA. N2 - Die Anden sind eine ~7000 km lange N-S-verlaufende Hochgebirgskette, die entlang des westlichen südamerikanischen Kontinentalrandes entstanden ist. Aufgrund der Subduktion der ozeanischen Nazca-Platte unter die kontinentale südamerikanische Platte ist die Bildung des nördlichen und zentralen Teils des Gebirges typisch für eine nicht-kollisionale Orogenese. In den südlichen Zentralanden (SZA, 29-39° S) verändert sich der Subduktionswinkel der ozeanischen Platte zwischen 33 ° S und 35 ° S von fast horizontal (< 5° Einfallen) im Norden zu einem steileren Winkel (~ 30 ° Einfallen) im Süden. Begleitet wird dieser Trend von systematischen, Süd-gerichteten Abnahmen der topographischen Erhebung, der Krusteneinengung und der Vorland- und Orogenbreite, sowie von Variationen im Deformationsstil des Vorlandes, wo die Einengung des Deckgebirges in unterschiedlichem Maße von einer entsprechenden Deformation des Grundgebirges begleitet wird. . Darüber hinaus sind die SZA eine seismisch sehr aktive Region. Die Kontinentalplatte zeichnet sich durch eine relativ flache Seismizität (< 30 km Tiefe) aus, die sich hauptsächlich auf die Übergänge vom Orogen zu den Vorlandbereichen konzentriert; im Gegensatz dazu tritt tiefere Seismizität in den zentralen Bereichen des nördlichen Vorlandes auf. Darüber hinaus ist häufig auftretende Seismizität auch in den flachen Teilen der ozeanischen Platte und im Plattensegment mit flach einfallender Subduktion zwischen 31 ° S und 33 ° S festzustellen. Die beobachtete räumliche Heterogenität der tektonischen und seismischen Deformation in den SZA wurde auf mehrere Ursachen zurückgeführt, darunter Schwankungen der Sedimentmächtigkeit, das Vorhandensein vererbter Strukturen und Veränderungen des Subduktionswinkels der ozeanischen Platte. Es gibt jedoch bislang keine Studie, die den Zusammenhang zwischen der langfristigen rheologischen Konfiguration der SZA und den räumlichen Deformationsmustern untersucht hat. Darüber hinaus wurden die Auswirkungen der Dichte- und Mächtigkeitsvariationen in der kontinentalen Oberplatte und der verschiedenen Subduktionswinkel auf den rheologischen Zustand der Lithosphäre noch nicht grundlegend untersucht. Da die Rheologie von der Gesteinsart, dem Druck und der Temperatur abhängt, ist eine detaillierte Charakterisierung der Zusammensetzung, Struktur und des thermischen Feldes der Lithosphäre erforderlich. Daher habe ich unter Verwendung kombinierter Modellierungsansätze und geophysikalischer Daten die folgenden 3D Modelle für die Lithosphäre der SZA konstruiert: (i) ein auf seismischen Daten basierendes Struktur- und Dichtemodell, das anhand des beobachteten Schwerefeldes validiert wurde; (ii) ein thermisches Modell, das die Umwandlung von Mantelscherwellengeschwindigkeiten in Temperaturen mit Berechnungen des konduktiven Wärmetransports für stationäre Bedingungen in der obersten Lithosphäre (<50 km Tiefe) integriert und durch Temperatur- und Wärmeflussmessungen validiert wurde; und (iii) ein rheologisches Modell der langfristig bedingten Lithosphärenfestigkeit, das auf den zuvor erzeugten Modellen gründet. Die Ergebnisse dieser Dissertation zeigen, dass die thermischen und rheologischen Bedingungen in den heutigen SZA durch verschiedene Mechanismen in unterschiedlichen Tiefen gesteuert werden. In flachen Tiefen (< 50 km) wird das thermomechanische Feld durch die heterogene Zusammensetzung der kontinentalen Lithosphäre differenziert. Eine Überprägung durch die ozeanische Platte ist dort nachweisbar, wo die ozeanische Platte flach (< 85 km tief) und die radiogene Kruste dünn ist, was insgesamt zu niedrigeren Temperaturen und einer höheren Festigkeit im Vergleich zu Bereichen führt, in denen die Platte steil einfällt und die radiogene Kruste dick ist. In Tiefen > 50 km treten die größten Temperaturschwankungen dort auf, wo die subduzierten Platte nachgewiesen wurde, was bedeutet, dass das tiefe thermische Feld den Subduktionswinkel gesteuert wird. Die Ergebnisse dieser Doktorarbeit legen nahe, dass der langfristige thermomechanische Zustand der Lithosphäre die räumliche Verteilung rezenter Seismizität beeinflusst. Der größte Anteil innerhalb der Kontinentalplatte registrierter Erdbebentätigkeit tritt oberhalb des modellierten Übergangs von spröden zu duktilen Bedingungen auf. Außerdem besteht eine räumliche Korrelation zwischen Erdbebenclustern und den Übergängen von den mechanisch rigideren Vorlandbereichen (Forearc und Foreland) zum mechanisch schwächeren Orogen. Demgegenüber wird vermehrte Seismizität innerhalb der ozeanischen Platte auch dort nachgewiesen, wo entsprechend der Modellierung langfristig duktile Bedingungen erwartet werden. Ich habe daher den möglichen Einfluss zusätzlicher Mechanismen untersucht, die ein Auslösen dieser Erdbeben begünstigen könnten, darunter die Kompaktion von Sedimenten an der Subduktionsgrenzfläche und Dehydrationsreaktionen innerhalb der Platte. Dazu habe ich eine qualitative Analyse des Hydratationszustandes des Mantels unter Verwendung des Verhältnisses zwischen Kompressions- und Scherwellengeschwindigkeit (Vp/Vs-Verhältnis aus einemseismischen Tomographiemodell) durchgeführt. Die Ergebnisse dieser Analyse zeigen, dass der Großteil der Seismizität räumlich mit hydratisierten Bereichen in der subduzierten Platte und im darüber liegenden kontinentalen Mantel korreliert, mit Ausnahme eines Erdbebenclusters, das innerhalb des flachen Plattensegments auftritt. In diesem Bereich wechselt die subduzierte Platte von einem flachen in einen steilen Subduktionswinkel und Erdbeben werden wahrscheinlich durch Biegevorgänge in der Platte ausgelöst. Auch die wichtigsten Variationen in den beobachteten tektonischen Mustern scheinen durch die thermomechanische Konfiguration der Lithosphäre beeinflusst zu sein. Die mechanisch starken Bereiche von Forearc und Foreland zeigen aufgrund ihrer Verformungsbeständigkeit geringere Verkürzungsraten als der relativ schwache Bereich des Orogens. Darüber hinaus bestätigen die in dieser Dissertation modellierten strukturellen und thermomechanischen Eigenschaften der Lithosphäre auch frühere Analysen geodynamischer Simulationen, denen zufolge der Deformationsstil im Orogen- und Vorlandbereich jeweils von Variationen in der Lithosphären- und Krustendicke, im Vorhandensein schwacher Sedimente und in der gravitativen potentiellen Energie kontrolliert wird. Eine Sonderstellung nimmt der nordöstliche Vorlandbereich der SZA ein, wo eine verstärkte Seismizität und eine das Deck-und Grundgebirge erfassende Deformation zu beobachten sind, obwohl die modellierte Krustenfestigkeit dort Werte übersteigt, die für die in diesem Gebiet anzunehmenden tektonischen Spannungen typisch wären. . Mechanismen zur Lokalisierung verstärkter Deformation in einem Gebiet beitragen können, das nach den vorliegenden Modellen einer tektonischen Verformung widerstehen sollte, sind: (i) erhöhte tektonische Kräfte durch ein steileres Abtauchen der Platte und (ii) Schwächezonen in der Kruste, die auf prä-andine Deformationsereignisse zurückgehen. Schließlich könnten die thermomechanischen Bedingungen in diesem Teil des Vorlands einchlüsselfaktor für die Erhaltung des flachen Subduktionswinkels in diesen Breiten der SZA sein. KW - Andes KW - Anden KW - subduction KW - Subduktion KW - lithosphere KW - Lithosphäre KW - earthquakes KW - Erdbeben KW - modelling KW - Modellierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549275 ER - TY - THES A1 - Pons, Michaël T1 - The Nature of the tectonic shortening in Central Andes T1 - Die Beschaffenheit der tektonischen Verkürzung in den Zentralanden N2 - The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that “bulldozes” the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as “flat-slab conveyor”. Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively. N2 - Die Andenkordillere ist ein Gebirgszug am westlichen Rand Südamerikas und Teil des östlichen zirkumpazifischen Gebirgsgürtels. Der ~7000 km lange Gebirgszug ist einer der längsten der Erde und beherbergt mit dem Altiplano-Puna-Plateau das zweitgrößte orogenetische Plateau der Welt. Die Anden sind als nicht-kollisionsbedingtes Subduktionsgebirge bekannt, das durch die Wechselwirkung zwischen der subduzierten ozeanischen Nazca-Platte und der südamerikanischen Kontinentalplatte entstanden ist. Entlang des Höhenzugs der Anden lassen sich Segmente unterschiedlicher morphotektonischer Provinzen ausmachen, die durch Variationen in topographischer Höhe, vulkanischer Aktivität, Deformationsform, Krustendicke, Krustenverkürzung und ozeanischer Plattengeometrie gekennzeichnet sind. Der größte Teil der heutigen Hebung lässt sich durch die Krustenverkürzung der letzten 50 Mio. Jahre erklären, wobei das Ausmaß der Verkürzung von ca. 300 km im zentralen Segment (15°S-30°S) auf weniger als die Hälfte im südlichen Teil (30°S-40°S) abnimmt. Es wurden mehrere Faktoren vorgeschlagen, die das Ausmaß und die Beschleunigung der Verkürzung der zentralen Anden in den letzten 15 Mio. Jahren beeinflusst haben könnten. Ein wichtiger Faktor ist wahrscheinlich die Plattengeometrie. Durch die Subduktion des Juan-Fernandez-Rückens und dessen hohe Auftriebskraft fällt die Platte bei 27-33°S in ~100 km Tiefe horizontal ein und bildet den pampeanischen flat-slab. Es wird angenommen, dass die horizontale Subduktion den thermomechanischen Zustand des Sierras-Pampeanas-Vorlandes beeinflusst, indem sie beispielsweise die Lithosphäre stärkt und die dickschalige Verlagerung der Deformation nach Osten sowie die Hebung der kristallinen Basis der Sierras-Pampeanas fördert. Vor etwa 30 Mio. Jahren verschob sich der flat-slab von der geographischen Breite des Altiplano zu seiner heutigen Position nach Süden. Die mit der Positionsverlagerung verbundenen Prozesse und Folgen für die gleichzeitige Beschleunigung der Verkürzungsraten in den zentralen Anden sind noch immer unklar. Obwohl die Passage des flat-slab eine Erklärung für dafür sein könnte, erklärt ihr Zeitpunkt nicht die beiden aus der Geologie abgeleiteten Verkürzungsimpulse vor etwa 15 und 4 Mio. Jahren. Ich stelle die Hypothese auf, dass die Deformation in den zentralen Anden durch eine komplexe Wechselwirkung zwischen der Subduktionsdynamik der Nazca-Platte und der dynamischen Materialschwächung der südamerikanischen Platte aufgrund einer Reihe von Prozessen in der oberen Platte gesteuert wird. Um diese Hypothese zu prüfen, ist eine detaillierte Untersuchung der Rolle des flat-slab, sowie der strukturellen Vererbung der Kontinentalplatte und der Subduktionsdynamik in den Anden erforderlich. Daher habe ich zwei Klassen von numerischen thermomechanischen Modellen erstellt: (i) Die erste Klasse von Modellen umfasst eine Reihe von generischen E-W-orientierten 2D-Subduktionsmodellen mit hoher Auflösung. Diese beinhalten subhorizontalen Subduktion um die Rolle der Subduktionsdynamik auf die zeitliche Variabilität der Verkürzungsrate in den zentralen Anden auf dem Altiplano (~21°S) zu untersuchen. Die modellierte Verkürzungsrate wurde mit der beobachteten tektonischen Verkürzungsrate in den zentralen Anden validiert. (ii) Die zweite Klasse von Modellen besteht aus einer Reihe von datengesteuerten 3D-Modellen der heutigen pampeanischen flat-slab-Konfiguration und der Sierras Pampeanas (26-42°S). Diese Modelle zielen darauf ab, den relativen Beitrag der heutigen subhorizontalen Subduktion und der ererbten Strukturen in der kontinentalen Lithosphäre zur Dehnungslokalisierung zu untersuchen. Beide Modellklassen wurden mit Hilfe des fortschrittlichen geodynamischen Finite-Elemente-Codes ASPECT erstellt. Das erste Hauptergebnis dieser Arbeit ist die Vermutung, dass zeitliche Änderungen der Verkürzung in den Zentralanden in erster Linie durch die Subduktionsdynamik der Nazca-Platte gesteuert werden, während diese in die Mantelübergangszone eindringt. Die Dynamik hängt von der westwärts gerichteten Geschwindigkeit der südamerikanischen Platte ab, die die Hauptantriebskraft für die Krustenverkürzung in den Anden darstellt und den Subduktionsgraben zum Zurückziehen zwingt. Wenn die subduzierende Platte den unteren Erdmantel erreicht, wölbt sie sich auf, bis der erzwungene Rückzug des Grabens dazu führt, dass auch die Platte im oberen Erdmantel steiler wird. Die aufgesteilte Platte behindert wiederum den Graben, der sich der vorrückenden südamerikanischen Platte widersetzt, was eine pulsierende Verkürzung zur Folge hat. Dieses Subduktionsregime, bestehend aus Aufwölbung und Aufsteilung, könnte durch die allgemeine westwärts gerichtete Geschwindigkeitsabnahme der südamerikanischen Platte ausgelöst worden sein. Der Durchgang des flat-slab ist zudem eine notwendige Bedingung, um die Verkürzung der Kontinentalplatte voran zu treiben, da subhorizontale Subduktion Teile der Mantellithosphäre abträgt und so die Kontinentalplatte schwächt. Dieser Prozess trägt somit zur effizienten Verkürzung bei während der Graben behindert wird und ist gefolgt von der Ablösung der Mantellithosphäre vor etwa 20 Mio. Jahren. Das Subduzieren des brasilianischen kratonischen Schildes unter das Orogen erfolgte schließlich vor etwa 11 Mio. Jahren aufgrund der mechanischen Schwächung der dicken Sedimentschicht, die den Schildrand bedeckte, sowie wegen des abnehmenden Widerstands der geschwächten Gebirgslithosphäre. Das zweite Hauptergebnis dieser Arbeit ist die Vermutung, dass der kalte flat-slab die darüber liegende kontinentale Lithosphäre stärkt und damit verhindert, dass sich Verformungen lokalisieren können. Daher wird die Deformation durch die an der Subduktionsfläche wirkende Scherspannung auf die östliche Front des flat-slab-Segments übertragen. Der flat-slab wirkt wie ein Eindringling, der die unter mantle-keel bekannte Anhäufung von abgelöstem Mantelmaterial beiseite schiebt. Der Versatz in der ostwärts gerichteten Deformationsausbreitung der flachen und der steileren Plattensegmenten im Süden führt zur Bildung einer transpressiven dextralen Scherungszone. Hier werden ererbte Verwerfungen vergangener tektonischer Ereignisse reaktiviert und helfen bei der Lokalisierung neuer Deformation in einer en-echelon-artigen Scherungszone. Dies geschieht durch einen Mechanismus, den ich als "flat-slab-Conveyor" bezeichne. Das laterale Zusammenschieben wird besonders durch das Flacherwerden des flat-slab beeinflusst, welches den Zeitpunkt mehrerer geologischer Ereignisse erklärt, die der Ankunft des flat-slab bei 33°S vorangehen. Dazu gehören der Beginn der Kompression und der Übergang von dünn- zu dickschaliger Deformation, die sich aus der Krustenkontraktion in den Sierras Pampeanas etwa 10 bzw. 6 Mio. Jahre vor der Kollision mit dem Juan-Fernandez-Rücken auf diesem Breitengrad ergaben. KW - Andes KW - Orogen KW - tectonics KW - Subduction KW - Deformation KW - Shortening KW - Flat subduction KW - Geodynamics KW - Altiplano KW - Puna KW - Sierras Pampeanas KW - Foreland KW - Altiplano KW - Anden KW - Deformation KW - Flache Subduktion KW - Vorland KW - Geodynamik KW - Orogen KW - Puna KW - Verkürzung KW - Sierras Pampeanas KW - Subduktion KW - Tektonik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-600892 ER -