TY - JOUR A1 - Bräuer, B. A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, D. A1 - El-Kelani, R. A1 - Weber, Michael H. T1 - High-resolution local earthquake tomography of the southern Dead Sea area JF - Geophysical journal international N2 - Local earthquake data from a dense temporary seismological network in the southern Dead Sea area have been analysed within the project DESIRE (Dead Sea Integrated Research Project). Local earthquakes are used for the first precise image of the distribution of the P-wave velocity and the vP/vS ratios. 65 stations registered 655 local events within 18 months of observation time. A subset of 530 well-locatable events with 26 730 P- and S-arrival times was used to calculate a tomographic model for the vP and vP/vS distribution. Since the study area is at first-order 2-D, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin fill is clearly imaged through high vP/vS ratios and low vP. The basin fill shows an asymmetric structure with average depth of 7 km at the western boundary and depth between 10 and 14 km at the eastern boundary. This asymmetry is reflected by the vertical strike-slip eastern border fault, and the normal faulting at the western boundary, caused by the transtensional deformation within the last 5 Myr. Within the basin fill the Lisan salt diapir is imaged through low vP/vS ratios, reflecting its low fluid content. The extensions were determined to 12 km in EW and 17 km in NS direction while its depth is 56 km. The thickness of the pre-basin sediments below the basin fill cannot be derived from the tomography datait is estimated to less than 3 km from former investigations. Below the basin, down to 18 km depth very low P-wave velocities and low vP/vS ratios are observedmost likely caused by fluids from the surrounding crust or the upper mantle. KW - Seismic tomography KW - Continental margins: transform KW - Continental tectonics: strike-slip and transform Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2012.05668.x SN - 0956-540X VL - 191 IS - 3 SP - 881 EP - 897 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Braeuer, Benjamin A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, D. A1 - El-Kelani, R. A1 - Weber, Michael H. T1 - Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area JF - Journal of seismology N2 - Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults. KW - Dead Sea basin KW - Microseismicity KW - Cluster KW - Pull-apart basin KW - Asymmetric basin KW - Transform fault Y1 - 2014 U6 - https://doi.org/10.1007/s10950-014-9441-4 SN - 1383-4649 SN - 1573-157X VL - 18 IS - 4 SP - 731 EP - 748 PB - Springer CY - Dordrecht ER -