TY - JOUR A1 - Wurzbacher, Christian A1 - Warthmann, Norman A1 - Bourne, Elizabeth Charlotte A1 - Attermeyer, Katrin A1 - Allgaier, Martin A1 - Powell, Jeff R. A1 - Detering, Harald A1 - Mbedi, Susan A1 - Großart, Hans-Peter A1 - Monaghan, Michael T. T1 - High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany) JF - MycoKeys N2 - Freshwater fungi are a poorly studied ecological group that includes a high taxonomic diversity. Most studies on aquatic fungal diversity have focused on single habitats, thus the linkage between habitat heterogeneity and fungal diversity remains largely unexplored. We took 216 samples from 54 locations representing eight different habitats in the meso-oligotrophic, temperate Lake Stechlin in North-East Germany. These included the pelagic and littoral water column, sediments, and biotic substrates. We performed high throughput sequencing using the Roche 454 platform, employing a universal eukaryotic marker region within the large ribosomal subunit (LSU) to compare fungal diversity, community structure, and species turnover among habitats. Our analysis recovered 1027 fungal OTUs (97% sequence similarity). Richness estimates were highest in the sediment, biofilms, and benthic samples (189-231 OTUs), intermediate in water samples (42-85 OTUs), and lowest in plankton samples (8 OTUs). NMDS grouped the eight studied habitats into six clusters, indicating that community composition was strongly influenced by turnover among habitats. Fungal communities exhibited changes at the phylum and order levels along three different substrate categories from littoral to pelagic habitats. The large majority of OTUs (> 75%) could not be classified below the order level due to the lack of aquatic fungal entries in public sequence databases. Our study provides a first estimate of lake-wide fungal diversity and highlights the important contribution of habitat heterogeneity to overall diversity and community composition. Habitat diversity should be considered in any sampling strategy aiming to assess the fungal diversity of a water body. KW - Freshwater fungi KW - aquatic fungi KW - metabarcoding KW - LSU KW - GMYC KW - habitat specificity KW - Chytridiomycota KW - Cryptomycota KW - Rozellomycota KW - community ecology KW - lake ecosystem KW - biofilm KW - sediment KW - plankton KW - water sample KW - benthos KW - reed KW - fungal diversity Y1 - 2016 U6 - https://doi.org/10.3897/mycokeys.16.9646 SN - 1314-4057 SN - 1314-4049 VL - 41 SP - 17 EP - 44 PB - Pensoft Publ. CY - Sofia ER - TY - JOUR A1 - Frenken, Thijs A1 - Alacid, Elisabet A1 - Berger, Stella A. A1 - Bourne, Elizabeth Charlotte A1 - Gerphagnon, Melanie A1 - Großart, Hans-Peter A1 - Gsell, Alena S. A1 - Ibelings, Bas W. A1 - Kagami, Maiko A1 - Kupper, Frithjof C. A1 - Letcher, Peter M. A1 - Loyau, Adeline A1 - Miki, Takeshi A1 - Nejstgaard, Jens C. A1 - Rasconi, Serena A1 - Rene, Albert A1 - Rohrlack, Thomas A1 - Rojas-Jimenez, Keilor A1 - Schmeller, Dirk S. A1 - Scholz, Bettina A1 - Seto, Kensuke A1 - Sime-Ngando, Telesphore A1 - Sukenik, Assaf A1 - Van de Waal, Dedmer B. A1 - Van den Wyngaert, Silke A1 - Van Donk, Ellen A1 - Wolinska, Justyna A1 - Wurzbacher, Christian A1 - Agha, Ramsy T1 - Integrating chytrid fungal parasites into plankton ecology: research gaps and needs JF - Environmental microbiology N2 - Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13827 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 3802 EP - 3822 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rojas-Jimenez, Keilor A1 - Wurzbacher, Christian A1 - Bourne, Elizabeth Charlotte A1 - Chiuchiolo, Amy A1 - Priscu, John C. A1 - Grossart, Hans-Peter T1 - Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica JF - Scientific reports N2 - Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93% and 60.32% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-15598-w SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER -