TY - JOUR A1 - Sinha, Shreya A1 - Saalfrank, Peter T1 - "Inverted" CO molecules on NaCl(100) BT - a quantum mechanical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Somewhat surprisingly, inverted ("O-down") CO adsorbates on NaCl(100) were recently observed experimentally after infrared vibrational excitation (Lau et al., Science, 2020, 367, 175-178). Here we characterize these species using periodic density functional theory and a quantum mechanical description of vibrations. We determine stationary points and minimum energy paths for CO inversion, for low (1/8 and 1/4 monolayers (ML)) and high (1 ML) coverages. Transition state theory is applied to estimate thermal rates for "C-down" to "O-down" isomerization and the reverse process. For the 1/4 ML p(1 x 1) structure, two-dimensional and three-dimensional potential energy surfaces and corresponding anharmonic vibrational eigenstates obtained from the time-independent nuclear Schrodinger equation are presented. We find (i) rather coverage-independent CO inversion energies (of about 0.08 eV or 8 kJ mol(-1) per CO) and corresponding classical activation energies for "C-down" to "O-down" isomerization (of about 0.15 eV or 14 kJ mol(-1) per CO); (ii) thermal isomerization rates at 22 K which are vanishingly small for the "C-down" to "O-down" isomerization but non-negligible for the back reaction; (iii) several "accidentally degenerate" pairs of eigenstates well below the barrier, each pair describing "C-down" to "O-down" localized states. Y1 - 2020 U6 - https://doi.org/10.1039/d0cp05198e SN - 1463-9076 SN - 1463-9084 VL - 23 IS - 13 SP - 7860 EP - 7874 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Prietzel, Claudia Christina A1 - Reinecke, Antje A1 - Koetz, Joachim T1 - "Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering JF - RSC Advances N2 - The aim of this study was to develop a one-step synthesis of gold nanotriangles (NTs) in the presence of mixed phospholipid vesicles followed by a separation process to isolate purified NTs. Negatively charged vesicles containing AOT and phospholipids, in the absence and presence of additional reducing agents (polyampholytes, polyanions or low molecular weight compounds), were used as a template phase to form anisotropic gold nanoparticles. Upon addition of the gold chloride solution, the nucleation process is initiated and both types of particles, i.e., isotropic spherical and anisotropic gold nanotriangles, are formed simultaneously. As it was not possible to produce monodisperse nanotriangles with such a one-step procedure, the anisotropic nanoparticles needed to be separated from the spherical ones. Therefore, a new type of separation procedure using combined polyelectrolyte/micelle depletion flocculation was successfully applied. As a result of the different purification steps, a green colored aqueous dispersion was obtained containing highly purified, well-defined negatively charged flat nanocrystals with a platelet thickness of 10 nm and an edge length of about 175 nm. The NTs produce promising results in surface-enhanced Raman scattering. Y1 - 2016 U6 - https://doi.org/10.1039/c6ra04808k SN - 2046-2069 VL - 6 SP - 33561 EP - 33568 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Harmanli, İpek A1 - Tarakina, Nadezda A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - "Giant" nitrogen uptake in ionic liquids confined in carbon pores JF - Journal of the American Chemical Society N2 - Ionic liquids are well known for their high gas absorption capacity. It is shown that this is not a solvent constant, but can be enhanced by another factor of 10 by pore confinement, here of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate (EmimOAc) in the pores of carbon materials. A matrix of four different carbon compounds with micro- and mesopores as well as with and without nitrogen doping is utilized to investigate the influence of the carbons structure on the nitrogen uptake in the pore-confined EmimOAc. In general, the absorption is most improved for IL in micropores and in nitrogen-doped carbon. This effect is so large that it is already seen in TGA and DSC experiments. Due to the low vapor pressure of the IL, standard volumetric sorption experiments can be used to quantify details of this effect. It is reasoned that it is the change of the molecular arrangement of the ions in the restricted space of the pores that creates additional free volume to host molecular nitrogen. Y1 - 2021 U6 - https://doi.org/10.1021/jacs.1c00783 SN - 0002-7863 SN - 1520-5126 VL - 143 IS - 25 SP - 9377 EP - 9384 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Kern, Simon A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael T1 - "Click" analytics for "click" chemistry - A simple method for calibration-free evaluation of online NMR spectra JF - Journal of magnetic resonance N2 - Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of H-1 spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and ally] alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h(-1) at 25 degrees C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. (C) 2017 Elsevier Inc. All rights reserved. KW - NMR spectroscopy KW - Reaction monitoring KW - Automated data evaluation KW - Thiol-ene click chemistry Y1 - 2017 U6 - https://doi.org/10.1016/j.jmr.2017.02.018 SN - 1090-7807 SN - 1096-0856 VL - 277 SP - 154 EP - 161 PB - Elsevier CY - San Diego ER -