TY - THES A1 - Rätzel, Dennis T1 - Tensorial spacetime geometries and background-independent quantum field theory T1 - Tensorielle Raumzeit-Geometrien und hintergrundunabhängige Quantenfeldtheorie N2 - Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes. N2 - Bekanntermaßen hat Albert Einstein die Geometrie der Raumzeit an den Maxwell-Gleichungen abgelesen. Heutzutage nehmen wie diese Geometrie so ernst, dass unsere fundamentale Materietheorie, das Standardmodell der Teilchenphysik, darauf beruht. Sobald es jedoch um die Physik außerhalb des Sonnensystems geht, scheinen einige Dinge unverstanden zu sein. Unabhängige Beobachtungsreihen zeigen, dass wir Konzepte wie dunkle Materie und dunkle Energie brauchen um unsere Modelle mit den Beobachtungen in Einklang zu bringen. Diese Konzepte passen aber nicht in das Standardmodell der Teilchenphysik. Um dieses Problem zu überwinden, müssen wir zumindest offen sein für Materiefelder mit Kinematiken und Dynamiken die über das Standardmodell hinaus gehen. Diese Materiefelder könnten dann aber auch durchaus zu anderen Raumzeitgeometrien gehören. Das ist die Grundlage dieser Arbeit: sie untersucht die zugehörigen Raumzeitgeometrien und beschäftigt sich mit der Quantisierung solcher Materiefelder unabhängig von jeder Hintergrundgeometrie. Im ersten Teil dieser Arbeit werden Bedingungen identifiziert, die eine allgemeine tensorielle Geometrie erfüllen muss um als sinnvolle Raumzeitgeometrie dienen zu können. Die Kinematik masseloser und massiver Punktteilchen auf solchen Raumzeitgeometrien werden eingeführt und die physikalischen Implikationen werden untersucht. Zusätzlich werden Feldgleichungen für massive Materiefelder konstruiert, wie zum Beispiel eine modifizierte Dirac-Gleichung. Im zweiten Teil wird eine hintergrundunabhängige Formulierung der Quantenfeldtheorie, die General Boundary Formulation, betrachtet. Die General Boundary Formulation wird dann auf den Unruh-Effekt angewendet und erste Versuche werden unternommen massive Materiefelder auf tensoriellen Raumzeiten zu quantisieren. KW - Quantenfeldtheorie KW - Raumzeitgeometrie KW - Hochenergiephysik KW - Elementarteilchen KW - Unruh-Effekt KW - quantum field theory KW - spacetime geometry KW - high energy physics KW - elementary particles KW - Unruh effect Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65731 ER - TY - THES A1 - Lewandowski, Max T1 - Hadamard states for bosonic quantum field theory on globally hyperbolic spacetimes T1 - Hadamard-Zustände für bosonische Quantenfeldtheorie auf global hyperbolischen Raumzeiten N2 - Quantenfeldtheorie auf gekrümmten Raumzeiten ist eine semiklassische Näherung einer Quantentheorie der Gravitation, im Rahmen derer ein Quantenfeld unter dem Einfluss eines klassisch modellierten Gravitationsfeldes, also einer gekrümmten Raumzeit, beschrieben wird. Eine der bemerkenswertesten Vorhersagen dieses Ansatzes ist die Erzeugung von Teilchen durch die gekrümmte Raumzeit selbst, wie zum Beispiel durch Hawkings Verdampfen schwarzer Löcher und den Unruh Effekt. Andererseits deuten diese Aspekte bereits an, dass fundamentale Grundpfeiler der Theorie auf dem Minkowskiraum, insbesondere ein ausgezeichneter Vakuumzustand und damit verbunden der Teilchenbegriff, für allgemeine gekrümmte Raumzeiten keine sinnvolle Entsprechung besitzen. Gleichermaßen benötigen wir eine alternative Implementierung von Kovarianz in die Theorie, da gekrümmte Raumzeiten im Allgemeinen keine nicht-triviale globale Symmetrie aufweisen. Letztere Problematik konnte im Rahmen lokal-kovarianter Quantenfeldtheorie gelöst werden, wohingegen die Abwesenheit entsprechender Konzepte für Vakuum und Teilchen in diesem allgemeinen Fall inzwischen sogar in Form von no-go-Aussagen manifestiert wurde. Beim algebraischen Ansatz für eine Quantenfeldtheorie werden zunächst Observablen eingeführt und erst anschließend Zustände via Zuordnung von Erwartungswerten. Obwohl die Observablen unter physikalischen Gesichtspunkten konstruiert werden, existiert dennoch eine große Anzahl von möglichen Zuständen, von denen viele, aus physikalischen Blickwinkeln betrachtet, nicht sinnvoll sind. Dieses Konzept von Zuständen ist daher noch zu allgemein und bedarf weiterer physikalisch motivierter Einschränkungen. Beispielsweise ist es natürlich, sich im Falle freier Quantenfeldtheorien mit linearen Feldgleichungen auf quasifreie Zustände zu konzentrieren. Darüber hinaus ist die Renormierung von Erwartungswerten für Produkte von Feldern von zentraler Bedeutung. Dies betrifft insbesondere den Energie-Impuls-Tensor, dessen Erwartungswert durch distributionelle Bilösungen der Feldgleichungen gegeben ist. Tatsächlich liefert J. Hadamard Theorie hyperbolischer Differentialgleichungen Bilösungen mit festem singulären Anteil, so dass ein geeignetes Renormierungsverfahren definiert werden kann. Die sogenannte Hadamard-Bedingung an Bidistributionen steht für die Forderung einer solchen Singularitätenstruktur und sie hat sich etabliert als natürliche Verallgemeinerung der für flache Raumzeiten formulierten Spektralbedingung. Seit Radzikowskis wegweisenden Resultaten lässt sie sich außerdem lokal ausdrücken, nämlich als eine Bedingung an die Wellenfrontenmenge der Bilösung. Diese Formulierung schlägt eine Brücke zu der von Duistermaat und Hörmander entwickelten mikrolokalen Analysis, die seitdem bei der Überprüfung der Hadamard-Bedingung sowie der Konstruktion von Hadamard Zuständen vielfach Verwendung findet und rasante Fortschritte auf diesem Gebiet ausgelöst hat. Obwohl unverzichtbar für die Analyse der Charakteristiken von Operatoren und ihrer Parametrizen sind die Methoden und Aussagen der mikrolokalen Analysis ungeeignet für die Analyse von nicht-singulären Strukturen und zentrale Aussagen sind typischerweise bis auf glatte Anteile formuliert. Beispielsweise lassen sich aus Radzikowskis Resultaten nahezu direkt Existenzaussagen und sogar ein konkretes Konstruktionsschema für Hadamard Zustände ableiten, die übrigen Eigenschaften (Bilösung, Kausalität, Positivität) können jedoch auf diesem Wege nur modulo glatte Funktionen gezeigt werden. Es ist das Ziel dieser Dissertation, diesen Ansatz für lineare Wellenoperatoren auf Schnitten in Vektorbündeln über global-hyperbolischen Lorentz-Mannigfaltigkeiten zu vollenden und, ausgehend von einer lokalen Hadamard Reihe, Hadamard Zustände zu konstruieren. Beruhend auf Wightmans Lösung für die d'Alembert-Gleichung auf dem Minkowski-Raum und der Herleitung der avancierten und retardierten Fundamentallösung konstruieren wir lokal Parametrizen in Form von Hadamard-Reihen und fügen sie zu globalen Bilösungen zusammen. Diese besitzen dann die Hadamard-Eigenschaft und wir zeigen anschließend, dass glatte Bischnitte existieren, die addiert werden können, so dass die verbleibenden Bedingungen erfüllt sind. N2 - Quantum field theory on curved spacetimes is understood as a semiclassical approximation of some quantum theory of gravitation, which models a quantum field under the influence of a classical gravitational field, that is, a curved spacetime. The most remarkable effect predicted by this approach is the creation of particles by the spacetime itself, represented, for instance, by Hawking's evaporation of black holes or the Unruh effect. On the other hand, these aspects already suggest that certain cornerstones of Minkowski quantum field theory, more precisely a preferred vacuum state and, consequently, the concept of particles, do not have sensible counterparts within a theory on general curved spacetimes. Likewise, the implementation of covariance in the model has to be reconsidered, as curved spacetimes usually lack any non-trivial global symmetry. Whereas this latter issue has been resolved by introducing the paradigm of locally covariant quantum field theory (LCQFT), the absence of a reasonable concept for distinct vacuum and particle states on general curved spacetimes has become manifest even in the form of no-go-theorems. Within the framework of algebraic quantum field theory, one first introduces observables, while states enter the game only afterwards by assigning expectation values to them. Even though the construction of observables is based on physically motivated concepts, there is still a vast number of possible states, and many of them are not reasonable from a physical point of view. We infer that this notion is still too general, that is, further physical constraints are required. For instance, when dealing with a free quantum field theory driven by a linear field equation, it is natural to focus on so-called quasifree states. Furthermore, a suitable renormalization procedure for products of field operators is vitally important. This particularly concerns the expectation values of the energy momentum tensor, which correspond to distributional bisolutions of the field equation on the curved spacetime. J. Hadamard's theory of hyperbolic equations provides a certain class of bisolutions with fixed singular part, which therefore allow for an appropriate renormalization scheme. By now, this specification of the singularity structure is known as the Hadamard condition and widely accepted as the natural generalization of the spectral condition of flat quantum field theory. Moreover, due to Radzikowski's celebrated results, it is equivalent to a local condition, namely on the wave front set of the bisolution. This formulation made the powerful tools of microlocal analysis, developed by Duistermaat and Hörmander, available for the verification of the Hadamard property as well as the construction of corresponding Hadamard states, which initiated much progress in this field. However, although indispensable for the investigation in the characteristics of operators and their parametrices, microlocal analyis is not practicable for the study of their non-singular features and central results are typically stated only up to smooth objects. Consequently, Radzikowski's work almost directly led to existence results and, moreover, a concrete pattern for the construction of Hadamard bidistributions via a Hadamard series. Nevertheless, the remaining properties (bisolution, causality, positivity) are ensured only modulo smooth functions. It is the subject of this thesis to complete this construction for linear and formally self-adjoint wave operators acting on sections in a vector bundle over a globally hyperbolic Lorentzian manifold. Based on Wightman's solution of d'Alembert's equation on Minkowski space and the construction for the advanced and retarded fundamental solution, we set up a Hadamard series for local parametrices and derive global bisolutions from them. These are of Hadamard form and we show existence of smooth bisections such that the sum also satisfies the remaining properties exactly. KW - mathematische Physik KW - Quantenfeldtheorie KW - Differentialgeometrie KW - mathematical physics KW - quantum field theory KW - differential geometry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439381 ER - TY - THES A1 - Kegeles, Alexander T1 - Algebraic foundation of Group Field Theory T1 - Algebraische Grundlagen der Gruppenfeldtheorie N2 - In this thesis we provide a construction of the operator framework starting from the functional formulation of group field theory (GFT). We define operator algebras on Hilbert spaces whose expectation values in specific states provide correlation functions of the functional formulation. Our construction allows us to give a direct relation between the ingredients of the functional GFT and its operator formulation in a perturbative regime. Using this construction we provide an example of GFT states that can not be formulated as states in a Fock space and lead to math- ematically inequivalent representations of the operator algebra. We show that such inequivalent representations can be grouped together by their symmetry properties and sometimes break the left translation symmetry of the GFT action. We interpret these groups of inequivalent representations as phases of GFT, similar to the classification of phases that we use in QFT’s on space-time. N2 - Die Gruppenfeldtheorie (GFT) ist Kandidat für eine Theorie der Quantengravitation. Formuliert in der Sprache der Quantenfeldtheorie, beschreibt die GFT die Entstehung der Raum-Zeit. Jedoch, im Gegensatz zu den QFT's der Teilchenphysik, ist die GFT nicht auf der Raum-Zeit formuliert, sondern liefert einen möglichen Ansatz zur deren Entstehung. Dennoch, ähnlich wie in den QFT's der Teilchenphysik, existieren zwei Arten der GFT: die funktionale und die operator Formulierung. Der funktionale Formalismus, geschrieben mit Hilfe von Funktionalintegralen, stellt eine Verbindungen zu anderen Theorien der Quantengravitation dar, und liefert eine gute Basis für die Analyse der Renormierung. Seine Bestandteile lassen sich jedoch nicht ohne weiteres physikalisch interpretieren, was einen intuitiven Zugang bei der Entwicklung der Theorie verkompliziert. Die Operator-Formulierung wird dagegen in Operatoren auf Hilbert-Räumen angegeben und bietet eine Anschauliche Definition der GFT-Teilchen sowie eine Beschreibung der Theorie in der Sprache der Vielteilchenphysik. Allerdings ist weder ihre Verknüpfung zu dem funktionalen Zugang noch zu anderen, verwandten Theorien der Gravitation, bekannt, was diese Formulierung wenig praktikabel macht. Eine Beziehung zwischen funktionellem und dem operator Formalismus der GFT würde es uns ermöglichen, die klare Anschauung mit den Intuitionen anderer Theorien zu verbinden und würde somit die Entwicklung auf dem Gebiet vorantreiben. In dieser Arbeit stelle ich eine Konstruktion des Operator-Formalismus vor, ausgehend von der funktionalen Formulierung der GFT. Ich definiere Operatoralgebren auf Hilberträumen, deren Erwartungswerte in bestimmten Zuständen den Korrelationsfunktionen der funktionalen Formulierung entsprechen. Diese Konstruktion gibt uns, eine direkte Beziehung zwischen den Bestandteilen der funktionellen GFT und der Operator-Formulierung. KW - quantum gravity KW - quantum field theory KW - group field theory KW - Quantengravitation KW - Quantenfeldtheorie KW - Gruppenfeldtheorie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421014 ER -