TY - JOUR A1 - Markovic, Danijela A1 - Carrizo, Savrina F. A1 - Kaercher, Oskar A1 - Walz, Ariane A1 - David, Jonathan N. W. T1 - Vulnerability of European freshwater catchments to climate change JF - Global change biology N2 - Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. KW - catchment connectivity KW - climate change KW - exposure KW - freshwater biodiversity KW - gap analysis KW - resilience KW - sensitivity KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13657 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 3567 EP - 3580 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Geiger, Tobias A1 - Frieler, Katja A1 - Levermann, Anders T1 - Reply to Comment on: High-income does not protect against hurricane losses (Environmental research letters. - 12 (2017)) T2 - Environmental research letters N2 - Recently a multitude of empirically derived damage models have been applied to project future tropical cyclone (TC) losses for the United States. In their study (Geiger et al 2016 Environ. Res. Lett. 11 084012) compared two approaches that differ in the scaling of losses with socio-economic drivers: the commonly-used approach resulting in a sub-linear scaling of historical TC losses with a nation's affected gross domestic product (GDP), and the disentangled approach that shows a sub-linear increase with affected population and a super-linear scaling of relative losses with per capita income. Statistics cannot determine which approach is preferable but since process understanding demands that there is a dependence of the loss on both GDP per capita and population, an approach that accounts for both separately is preferable to one which assumes a specific relation between the two dependencies. In the accompanying comment, Rybski et al argued that there is no rigorous evidence to reach the conclusion that high-income does not protect against hurricane losses. Here we affirm that our conclusion is drawn correctly and reply to further remarks raised in the comment, highlighting the adequateness of our approach but also the potential for future extension of our research. KW - climate change KW - tropical cyclones KW - damage KW - meteorological extremes KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1088/1748-9326/aa88d6 SN - 1748-9326 VL - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Laudan, Jonas A1 - Rözer, Viktor A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Thieken, Annegret T1 - Damage assessment in Braunsbach 2016 BT - data collection and analysis for an improved understanding of damaging processes during flash floods T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 653 KW - building damage KW - mai 29th KW - flow KW - vulnerability KW - 2016-origin KW - pathways KW - Germany KW - impacts KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418392 SN - 1866-8372 IS - 653 ER - TY - JOUR A1 - Kreibich, Heidi A1 - Di Baldassarre, Giuliano A1 - Vorogushyn, Sergiy A1 - Aerts, Jeroen C. J. H. A1 - Apel, Heiko A1 - Aronica, Giuseppe T. A1 - Arnbjerg-Nielsen, Karsten A1 - Bouwer, Laurens M. A1 - Bubeck, Philip A1 - Caloiero, Tommaso A1 - Chinh, Do T. A1 - Cortes, Maria A1 - Gain, Animesh K. A1 - Giampa, Vincenzo A1 - Kuhlicke, Christian A1 - Kundzewicz, Zbigniew W. A1 - Llasat, Maria Carmen A1 - Mard, Johanna A1 - Matczak, Piotr A1 - Mazzoleni, Maurizio A1 - Molinari, Daniela A1 - Dung, Nguyen V. A1 - Petrucci, Olga A1 - Schröter, Kai A1 - Slager, Kymo A1 - Thieken, Annegret A1 - Ward, Philip J. A1 - Merz, Bruno T1 - Adaptation to flood risk BT - Results of international paired flood event studies JF - Earth's Future N2 - As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur. KW - flooding KW - vulnerability KW - global environmental change KW - adaptation Y1 - 2017 U6 - https://doi.org/10.1002/2017EF000606 SN - 2328-4277 VL - 5 SP - 953 EP - 965 PB - Wiley CY - Hoboken ER -