TY - JOUR A1 - Han, Fang A1 - Rydin, Catarina A1 - Bolinder, Kristina A1 - Dupont-Nivet, Guillaume A1 - Abels, Hemmo A. A1 - Koutsodendris, Andreas A1 - Zhang, Kexin A1 - Hoorn, Carina T1 - Steppe development on the Northern Tibetan Plateau inferred from Paleogene ephedroid pollen JF - Grana N2 - Steppe vegetation represents a key marker of past Asian aridification and is associated with monsoonal intensification. Little is, however, known about the origin of this pre-Oligocene vegetation, its specific composition and how it changed over time and responded to climatic variations. Here, we describe the morphological characters of Ephedraceae pollen in Eocene strata of the Xining Basin and compare the pollen composition with the palynological composition of Late Cretaceous and Paleocene deposits of the Xining Basin and the Quaternary deposits of the Qaidam Basin. We find that the Late Cretaceous steppe was dominated by Gnetaceaepollenites; in the transition from the Cretaceous to the Paleocene, Gnetaceaepollenites became extinct and Ephedripites subgenus Ephedripites dominated the flora with rare occurrences of Ephedripites subgen. Distachyapites; the middle to late Eocene presents a strong increase of Ephedripites subgen. Distachyapites; and the Quaternary/Recent is marked by a significantly lower diversity of Ephedraceae (and Nitrariaceae) compared to the Eocene. In the modern landscape of China, only a fraction of the Paleogene species diversity of Ephedraceae remains and we propose that these alterations in Ephedreaceae composition occurred in response to the climatic changes at least since the Eocene. In particular, the strong Eocene monsoons that enhanced the continental aridification may have played an important role in the evolution of Ephedripites subgen. Distachyapites triggering an evolutionary shift to wind-pollination in this group. Conceivably, the Ephedraceae/Nitrariaceae dominated steppe ended during the Eocene/Oligocene climatic cooling and aridification, which favoured other plant taxa. KW - pollen morphology KW - Eocene KW - climate KW - Ephedripites KW - Distachyapites KW - Gnetaceaepollenites KW - monsoon Y1 - 2016 U6 - https://doi.org/10.1080/00173134.2015.1120343 SN - 0017-3134 SN - 1651-2049 VL - 55 SP - 71 EP - 100 PB - Springer CY - Oslo ER - TY - GEN A1 - Licht, Alexis A1 - Dupont-Nivet, Guillaume A1 - Pullen, Alex A1 - Kapp, Paul A1 - Abels, Hemmo A. A1 - Lai, Zulong A1 - Guo, ZhaoJie A1 - Abell, Jordan A1 - Giesler, Dominique T1 - Resilience of the Asian atmospheric circulation shown by paleogene dust provenance T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1114 KW - Chinese Loess Plateau KW - last glacial maximum KW - Tibetan Plateau KW - Yellow-River KW - climate KW - basin KW - evolution KW - ardification KW - monsoons KW - desert Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436381 SN - 1866-8372 IS - 1114 ER -