TY - JOUR A1 - Lever, Fabiano A1 - Ramelow, Sven A1 - Gühr, Markus T1 - Effects of time-energy correlation strength in molecular entangled photon spectroscopy JF - Physical review : A, Atomic, molecular, and optical physics N2 - In this paper, we explore the time-energy domain quantum-classical transition comparing a classical pump-probe experiment on a diatomic molecule to its quantum enhanced counterpart, where the pump and probe pulses are substituted by the signal and idler beams of a spontaneous parametric down conversion (SPDC) source. Absorption of biphotons generated with SPDC exploits quantum time-energy entanglement to enhance the overall yield and selectivity of the process, when compared with a classical pump-probe setup, while maintaining femtosecond time resolution. We systematically study the effects of correlation strength on process efficiency and selectivity, comparing the results to classical pump-probe spectra. An excitation scheme to improve the yield based on spectral narrowing of biphotons is shown. The results indicate that the quantum improvements in yield are caused by a more efficient use of the total power available for the process. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevA.100.053844 SN - 2469-9926 SN - 2469-9934 VL - 100 IS - 5 PB - American Physical Society CY - College Park ER -