TY - THES A1 - Sinn, Cornelia G. T1 - Ion binding to polymers and lipid membranes in aqueous solutions : Ionenbindung an Polymeren und Lipidmembranen in wässrigen Lösungen N2 - Ziel dieser Arbeit ist die Untersuchung der Ionenbindung an Polymeren und Lipidmembranen in wässrigen Lösungen. Im ersten Teil dieser Arbeit wurde der Einfluss verschiedener anorganischer Salze und Polyelektrolyte auf die Struktur des Wassers mit Hilfe Isothermer Mikrotitrationskalorimetrie (ITC) erforscht. Die Verdünnungswärme der Salze wurde als Maß für die Fähigkeit der Ionen, die geordnete Struktur des Wassers zu stabilisieren oder zu zerstören, verwendet. Die Verdünnungswärmen konnten auf Hofmeister Effekte zurückgeführt werden. Im Anschluss daran wurde die Bindung von Ca2+ an Natrium- Poly(acrylsäure) (NaPAA) untersucht. Mit Hilfe von ITC und einer Ca2+- selektiven Elektrode wurde die Reaktionsenthalpie und Bindungsisotherme gemessen. Es wurde gezeigt, dass die Binding von Ca2+ - Ionen an NaPAA stark endotherm und daher entropiegetrieben ist. Anschließend wurde die Bindung von Ca2+ an die eindimensionale Polymerkette mit der an ein Lipidvesikel mit denselben funktioniellen Gruppen verglichen. Es wurde beobachtet, dass die Ionenbindung –wie auch im Fall des Polymers- endotherm ist. Ein Vergleich der Ca2+- Bindung an die Lipidmembran mit der an das Polymer konnte zeigen, dass das Ion schwächer an die Membran bindet. Im Zusammenhang mit diesen Experimenten wurde auch beobachtet, dass Ca2+ nicht nur an geladene, sondern auch an zwitterionische Lipidvesikel bindet. Schließlich wurde die Wechselwirkung zweier Salze, KCl and NaCl, mit einem neutralen Polymergel, PNIPAAM, und dem geladenen Polymer PAA untersucht. Mit Hilfe von Kalorimetrie und einer kaliumselektiven Elektrode wurde beobachtet, dass die Ionen mit beiden Polymeren wechselwirken, unabhängig davon, ob diese Ladungen tragen, oder nicht. N2 - The goal of this work was to study the binding of ions to polymers and lipid bilayer membranes in aqueous solutions. In the first part of this work, the influence of various inorganic salts and polyelectrolytes on the structure of water was studied using Isothermal Titration Calorimetry (ITC). The heat of dilution of the salts was used as a scale of water structure making and breaking of the ions. The heats of dilution could be attributed to the Hofmeister Series. Following this, the binding of Ca2+ to poly(sodium acrylate) (NaPAA) was studied. ITC and a Ca2+ Ion Selective Electrode were used to measure the reaction enthalpy and binding isotherm. Binding of Ca2+ ions to PAA, was found to be highly endothermic and therefore solely driven by entropy. We then compared the binding of ions to the one-dimensional PAA polymer chain to the binding to lipid vesicles with the same functional groups. As for the polymer, Ca2+ binding was found to be endothermic. Binding of calcium to the lipid bilayer was found to be weaker than to the polymer. In the context of these experiments, it was shown that Ca2+ not only binds to charged but also to zwitterionic lipid vesicles. Finally, we studied the interaction of two salts, KCl and NaCl, to a neutral polymer gel, PNIPAAM, and to the ionic polymer PAA. Combining calorimetry and a potassium selective electrode we observed that the ions interact with both polymers, whether containing charges or not. T2 - Ion binding to polymers and lipid membranes in aqueous solutions : Ionenbindung an Polymeren und Lipidmembranen in wässrigen Lösungen KW - Ionen KW - Bindung KW - Salz KW - Wasser KW - Struktur KW - Hofmeister KW - Polyelektrolyt KW - Isotherme Titrationskalorimetrie KW - ionenselektive Elektrode KW - Vesikel KW - Calcium KW - Micr KW - ions KW - binding KW - salt KW - water KW - structure KW - Hofmeister KW - polyelectrolyte KW - Isothermal Titration Calorimetry KW - ion selective electrode KW - vesicle KW - calcium KW - micro Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001778 ER - TY - THES A1 - Kölsch, Patrick T1 - Static and dynamic properties of soluble surfactants at the air/water interface T1 - Statische und dynamische Eigenschaften von löslichen Amphiphilen an der Wasser/Luft Grenzfläche N2 - Amphiphilic molecules contain a hydrophilic headgroup and a hydrophobic tail. The headgroup is polar or ionic and likes water, the tail is typically an aliphatic chain that cannot be accommodated in a polar environment. The prevailing molecular asymmetry leads to a spontaneous adsorption of amphiphiles at the air/water or oil/water interfaces. As a result, the surface tension and the surface rheology is changed. Amphiphiles are important tools to deliberately modify the interfacial properties of liquid interfaces and enable new phenomena such as foams which cannot be formed in a pure liquid. In this thesis we investigate the static and dynamic properties of adsorption layers of soluble amphiphiles at the air/water interface, the so called Gibbs monolayers. The classical way for an investigation of these systems is based on a thermodynamic analysis of the equilibrium surface tension as a function of the bulk composition in the framework of Gibbs theory. However, thermodynamics does not provide any structural information and several recent publications challenge even fundamental text book concepts. The experimental investigation faces difficulties imposed by the low surface coverage and the presence of dissolved amphiphiles in the adjacent bulk phase. In this thesis we used a suite of techniques with the sensitivity to detect less than a monolayer of molecules at the air-water interface. Some of these techniques are extremely complex such as infrared visible sum frequency generation (IR-VIS SFG) spectroscopy or second harmonic generation (SHG). Others are traditional techniques, such as ellipsometry employed in new ways and pushed to new limits. Each technique probes selectively different parts of the interface and the combination provides a profound picture of the interfacial architecture. The first part of the thesis is dedicated to the distribution of ions at interfaces. Adsorption layers of ionic amphiphiles serve as model systems allowing to produce a defined surface charge. The charge of the monolayer is compensated by the counterions. As a result of a complex zoo of interactions there will be a defined distribution of ions at the interface, however, its experimental determination is a big scientific challenge. We could demonstrate that a combination of linear and nonlinear techniques gives direct insights in the prevailing ion distribution. Our investigations reveal specific ion effects which cannot be described by classical Poisson-Boltzmann mean field type theories. Adsorption layer and bulk phase are in thermodynamic equilibrium, however, it is important to stress that there is a constant molecular exchange between adsorbed and dissolved species. This exchange process is a key element for the understanding of some of the thermodynamic properties. An excellent way to study Gibbs monolayers is to follow the relaxation from a non-equilibrium to an equilibrium state. Upon compression amphiphiles must leave the adsorption layer and dissolve in the adjacent bulk phase. Upon expansion amphiphiles must adsorb at the interface to restore the equilibrium coverage. Obviously the frequency of the expansion and compression cycles must match the molecular exchange processes. At too low frequencies the equilibrium is maintained at all times. If the frequency is too fast the system behaves as a monolayer of insoluble surfactants. In this thesis we describe an unique variant of an oscillating bubble technique that measures precisely the real and imaginary part of the complex dilational modulus E in a frequency range up to 500 Hz. The extension of about two decades in the time domain in comparison to the conventional method of an oscillating drop is a tremendous achievement. The imaginary part of the complex dilational modulus E is a consequence of a dissipative process which is interpreted as an intrinsic surface dilational viscosity. The IR-VIS SFG spectra of the interfacial water provide a molecular interpretation of the underlying dissipative process. N2 - Amphiphile Moleküle vereinen zwei gegensätzliche Strukturelemente. Sie bestehen aus einer polaren oder ionischen Kopfgruppe und einem unpolaren Molekülteil, häufig einer Kohlenwasserstoffkette. Die vorliegende molekulare Asymmetrie bewirkt eine spontane Adsorption der Amphiphile an der Wasser/Luft Grenzschicht. Als Folge verändern sich Oberflächenspannung und Grenzflächenrheologie. Amphiphile Moleküle werden benutzt, um die Eigenschaften flüssiger Grenzflächen zu verändern und begegnen uns z.B. in Form von Seifen oder anderen waschaktiven Substanzen im täglichen Leben. Der erste Teil dieser Doktorarbeit widmet sich der Verteilung von Ionen an geladenen flüssigen Grenzflächen. Adsorbtionsschichten ionischer Amphiphile bieten Modellsysteme zur Untersuchung dieses klassischen Bereiches der Kolloid- und Grenzflächenforschung. Durch die Adsorption der Amphiphile in der Grenzschicht werden definierte Oberflächenladungen erzeugt, welche durch die angrenzenden Gegenionen in der Sublage kompensiert werden. In dieser Arbeit wird gezeigt, dass eine Kombination aus linearen und komplexen nichtlinearen optischen Methoden, die experimentelle Bestimmung der Verteilung der Gegenionen an geladenen Grenzflächen ermöglicht. Unsere Messungen zeigen ionenspezifische Effekte, die sich nicht in Reihenfolge des Periodensystems ordnen lassen. Insbesondere wurde ein Phasenübergang in der Verteilung der Gegenionen von einem Zustand, in dem sich die Ionen in der Sublage befinden, zu einem Zustand bestehend aus direkt kondensierten Ionen beobachtet. Dieser Phasenübergang geschieht innerhalb einer geringen Erhöhung der Oberflächenladung und lässt sich nicht mit klassischen Theorien beschreiben. Der zweite Teil dieser Arbeit widmet sich der Stabilität von Schaumlamellen. Eine Schaumlamelle ist ein dünner Wasserfilm, der durch die Adsorption von oberflächenaktiven Molekülen an beiden Seiten stabilisiert wird. In Zusammenhang von Schäumen muss zwischen zwei Prozessen unterschieden werden: Der Schaumbildung und der Schaumstabilität. Die zugrundeliegenden Mechanismen der Schaumbildung sind weitestgehend verstanden, die der Schaumstabilität jedoch noch nicht. Um die Stabilität von Schäumen zu untersuchen, müssen Nichtgleichgewichtszustände erzeugt und die anschließende Relaxation in das Gleichgewicht beobachtet werden. In dieser Arbeit wurde ein neues Verfahren entwickelt, welches es ermöglicht, das Elastizitätsmodul von Grenzflächen in einem Frequenzbereich von 1-500 Hz zu bestimmen. Dies bedeutet eine Erweiterung um zwei Dekaden gegenüber herkömmlichen Methoden. Die Idee ist denkbar einfach: In einer mit Flüssigkeit gefüllten Kammer wird über die Bewegung eines Piezos eine Luftblase in Schwingung versetzt und mit einem in der Kammer befindlichen Drucksensor die Schwingungsantwort der Blase aufgezeichnet. Unsere Untersuchungen zeigen, dass die Voraussetzung für die Ausbildung einer stabilen Schaumlamelle das Vorkommen einer intrinsischen Oberflächenviskosität ist. Eine anschauliche Erklärung verdeutlicht dies: Eine viskose Oberfläche ist in der Lage, eine eingehende Störung lokal zu dämpfen, im Gegensatz zu einer komplett elastischen Oberfläche, wo sich die Störung über die gesamte Schaumlamelle verbreiten kann. Untersuchungen mittels der IR-VIS SFG Spektroskopie ergaben, dass die Struktur des Wassers bei der Beschreibung der Schaumstabilität auf molekularer Ebene eine entscheidende Rolle spielt: Die Oberflächenviskosität ist mit einem dissipativen Vorgang innerhalb der Grenzschicht verbunden. Dieser dissipative Vorgang konnte auf molekularer Ebene durch das Aufbrechen von Wasserstoffbrückenbindungen identifiziert werden. Ausschlaggebend war dabei der Austausch der adsorbierten Amphiphile in der Grenzfläche und der angrenzenden Sublage. KW - Nichtlineare Optik KW - Ellipsometrie KW - Schaum KW - Tensidlösung KW - Tensidschaum KW - Tensid KW - Ionisches Tensid KW - Hofmeister KW - Ionenspezifisch KW - Schaumstabilität KW - Schaumbildung KW - Summenfrequenzspektroskopie KW - Hofmeister KW - ions KW - foam KW - NLO KW - SFG KW - SHG Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5716 ER -