TY - JOUR A1 - Braune, Steffen A1 - Walter, M. A1 - Schulze, F. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Changes in platelet morphology and function during 24 hours of storage JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - For in vitro studies assessing the interaction of platelets with implant materials, common and standardized protocols for the preparation of platelet rich plasma (PRP) are lacking, which may lead to non-matching results due to the diversity of applied protocols. Particularly, the aging of platelets during prolonged preparation and storage times is discussed to lead to an underestimation of the material thrombogenicity. Here, we study the influence of whole blood-and PRP-storage times on changes in platelet morphology and function. Whole blood PFA100 closure times increased after stimulation with collagen/ADP and collagen/epinephrine. Twenty four hours after blood collection, both parameters were prolonged pathologically above the upper limit of the reference range. Numbers of circulating platelets, measured in PRP, decreased after four hours, but no longer after twenty four hours. Mean platelet volumes (MPV) and platelet large cell ratios (P-LCR, 12 fL - 40 fL) decreased over time. Immediately after blood collection, no debris or platelet aggregates could be visualized microscopically. After four hours, first debris and very small aggregates occurred. After 24 hours, platelet aggregates and also debris progressively increased. In accordance to this, the CASY system revealed an increase of platelet aggregates (up to 90 mu m diameter)with increasing storage time. The percentage of CD62P positive platelets and PF4 increased significantly with storage time in resting PRP. When soluble ADP was added to stored PRP samples, the number of activatable platelets decreased significantly over storage time. The present study reveals the importance of a consequent standardization in the preparation of WB and PRP. Platelet morphology and function, particularly platelet reactivity to adherent or soluble agonists in their surrounding milieu, changed rapidly outside the vascular system. This knowledge is of crucial interest, particularly in the field of biomaterial development for cardiovascular applications, and may help to define common standards in the in vitro hemocompatibility testing of biomaterials. KW - Platelet KW - platelet function KW - platelet rich plasma KW - whole blood KW - platelet aging KW - platelet storage KW - hemocompatibility KW - biomaterials Y1 - 2014 U6 - https://doi.org/10.3233/CH-141876 SN - 1386-0291 SN - 1875-8622 VL - 58 IS - 1 SP - 159 EP - 170 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Degtyar, Elena A1 - Harrington, Matthew J. A1 - Politi, Yael A1 - Fratzl, Peter T1 - The mechanical role of metal ions in biogenic protein-based materials JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Protein-metal interactions-traditionally regarded for roles in metabolic processes-are now known to enhance the performance of certain biogenic materials, influencing properties such as hardness, toughness, adhesion, and self-healing. Design principles elucidated through thorough study of such materials are yielding vital insights for the design of biomimetic metallopolymers with industrial and biomedical applications. Recent advances in the understanding of the biological structure-function relationships are highlighted here with a specific focus on materials such as arthropod biting parts, mussel byssal threads, and sandcastle worm cement. KW - adhesives KW - biomaterials KW - metal coordination KW - sacrificial bonds KW - self-healing materials Y1 - 2014 U6 - https://doi.org/10.1002/anie.201404272 SN - 1433-7851 SN - 1521-3773 VL - 53 IS - 45 SP - 12026 EP - 12044 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Schmitt, Clemens Nikolaus Zeno T1 - The role of protein metal complexes in the mechanics of Mytilus californianus byssal threads T1 - Der Einfluss von Protein-Metall-Komplexen auf die mechanischen Eigenschaften der Byssusfäden von Mytilus californianus N2 - Protein-metal coordination complexes are well known as active centers in enzymatic catalysis, and to contribute to signal transduction, gas transport, and to hormone function. Additionally, they are now known to contribute as load-bearing cross-links to the mechanical properties of several biological materials, including the jaws of Nereis worms and the byssal threads of marine mussels. The primary aim of this thesis work is to better understand the role of protein-metal cross-links in the mechanical properties of biological materials, using the mussel byssus as a model system. Specifically, the focus is on histidine-metal cross-links as sacrificial bonds in the fibrous core of the byssal thread (Chapter 4) and L-3,4-dihydroxyphenylalanine (DOPA)-metal bonds in the protective thread cuticle (Chapter 5). Byssal threads are protein fibers, which mussels use to attach to various substrates at the seashore. These relatively stiff fibers have the ability to extend up to about 100 % strain, dissipating large amounts of mechanical energy from crashing waves, for example. Remarkably, following damage from cyclic loading, initial mechanical properties are subsequently recovered by a material-intrinsic self-healing capability. Histidine residues coordinated to transition metal ions in the proteins comprising the fibrous thread core have been suggested as reversible sacrificial bonds that contribute to self-healing; however, this remains to be substantiated in situ. In the first part of this thesis, the role of metal coordination bonds in the thread core was investigated using several spectroscopic methods. In particular, X-ray absorption spectroscopy (XAS) was applied to probe the coordination environment of zinc in Mytilus californianus threads at various stages during stretching and subsequent healing. Analysis of the extended X-ray absorption fine structure (EXAFS) suggests that tensile deformation of threads is correlated with the rupture of Zn-coordination bonds and that self-healing is connected with the reorganization of Zn-coordination bond topologies rather than the mere reformation of Zn-coordination bonds. These findings have interesting implications for the design of self-healing metallopolymers. The byssus cuticle is a protective coating surrounding the fibrous thread core that is both as hard as an epoxy and extensible up to 100 % strain before cracking. It was shown previously that cuticle stiffness and hardness largely depend on the presence of Fe-DOPA coordination bonds. However, the byssus is known to concentrate a large variety of metals from seawater, some of which are also capable of binding DOPA (e.g. V). Therefore, the question arises whether natural variation of metal composition can affect the mechanical performance of the byssal thread cuticle. To investigate this hypothesis, nanoindentation and confocal Raman spectroscopy were applied to the cuticle of native threads, threads with metals removed (EDTA treated), and threads in which the metal ions in the native tissue were replaced by either Fe or V. Interestingly, replacement of metal ions with either Fe or V leads to the full recovery of native mechanical properties with no statistical difference between each other or the native properties. This likely indicates that a fixed number of metal coordination sites are maintained within the byssal thread cuticle – possibly achieved during thread formation – which may provide an evolutionarily relevant mechanism for maintaining reliable mechanics in an unpredictable environment. While the dynamic exchange of bonds plays a vital role in the mechanical behavior and self-healing in the thread core by allowing them to act as reversible sacrificial bonds, the compatibility of DOPA with other metals allows an inherent adaptability of the thread cuticle to changing circumstances. The requirements to both of these materials can be met by the dynamic nature of the protein-metal cross-links, whereas covalent cross-linking would fail to provide the adaptability of the cuticle and the self-healing of the core. In summary, these studies of the thread core and the thread cuticle serve to underline the important and dynamic roles of protein-metal coordination in the mechanical function of load-bearing protein fibers, such as the mussel byssus. N2 - Protein-Metall Bindungen sind vor allem durch ihre Rolle in physiologischen Prozessen bekannt. Vor kurzem jedoch wurde eine völlig andere Funktion dieser chemischen Bindungen, als lasttragendes Vernetzungselement in Kieferzangen mariner Ringelwürmer der Gattung Nereis und Byssusfäden mariner Muscheln der Gattung Mytilus (Miesmuscheln) entdeckt. Ziel dieser Dissertation ist es, am Beispiel von M. californianus Byssusfäden, ein besseres Verständnis des Einflusses von Protein-Metall Komplexen auf die mechanischen Eigenschaften biologischer Materialien zu erlangen. Byssusfäden sind Proteinfasern, welche Miesmuscheln zur sicheren Befestigung verwenden. Diese relativ steifen Fäden können bis zu 100 % gedehnt zu werden, ohne zu brechen. Bei sofortiger Wiederbelastung zeigt sich jedoch eine Verschlechterung der mechanischen Eigenschaften des Materials. Erstaunlicherweise können sich die mechanischen Eigenschaften der Fäden hiervon wieder erholen. Es wird angenommen, dass im Faserkern der Byssusfäden die Aminosäure Histidin Bindungen mit Metallionen eingeht, welche als reversible Opferbindungen fungieren können und so einen Selbstheilungsprozess ermöglichen. In dieser Arbeit wurde der Beitrag von Protein-Zink Bindungen zur Mechanik der Byssusfäden mittels Röntgenabsorptionsspektroskopie (XAS), untersucht. Die ermittelten Daten legen nahe, dass Zn-Aminosäure Bindungen unter Dehnung der Byssusfäden brechen. Des Weiteren scheint der Selbstheilungsprozess nicht auf der bloßen Wiederherstellung dieser Bindungen zu beruhen, sondern viel mehr auf der Regenerierung der anfänglichen Bindungsstruktur und -verteilung. Diese Erkenntnisse stellen interessante Konzepte für die Entwicklung von selbstheilenden Metallopolymeren bereit. Die relativ harte Hülle der Byssusfäden schützt den Faserkern vor Abrieb. Laut Literatur basiert ihre Härte und Steifigkeit hauptsächlich auf der Quervernetzung durch Fe-DOPA (eine modifizierte Aminosäure) Bindungen. Jedoch können verschiedene Metalle aus dem Meerwasser in Byssusfäden aufgenommen werden und auch Bindungen mit DOPA bilden. Daher stellt sich die Frage, nach dem Zusammenhang zwischen mechanischen Eigenschaften und der Metallzusammensetzung der Byssushülle. Um dieser Frage nachzugehen, wurden die Metallionen aus der Hülle natürlicher Byssusfäden entfernt, und durch entweder Fe oder V ersetzt. Anschließend wurden die mechanischen Eigenschaften der Hüllen der behandelten und unbehandelten Byssusfäden mittels Nanoindentierung bestimmt. Interessanterweise besteht kein Unterschied der mechanischen Eigenschaften der natürlichen und modifizierten Hüllen der Byssusfäden, was dafür spricht, dass in der Hülle der Byssusfäden eine feste Anzahl an Protein-Metall Quervernetzungspunkten vorhanden ist, die möglicherweise durch den speziellen Produktionsprozess der Fäden festgelegt wird. Dies könnte eine evolutionäre Anpassung des Byssus darstellen, um eine verlässliche Verankerung des Organismus in verschiedenen Umgebungen zu gewährleisten. Während die Dynamik der Protein-Metall Bindungen ihnen eine Rolle als chemische Opferbindung im selbstheilenden Faserkern erlaubt, ermöglicht sie die Funktion der Hülle unter Verwendung verschiedener Metalle. Andere nicht-kovalente Wechselwirkungen haben sicherlich eine ähnliche Dynamik, und kovalente Bindungen sind stabiler, aber nur Protein-Metall Bindungen erlauben eine stabile und dynamische Quervernetzung, ohne die weder das Anpassungsvermögen der Hülle, noch das Selbstheilungsvermögen des Faserkerns möglich wären. Die Untersuchungen der Hülle und des Faserkerns der Byssusfäden verdeutlichen die Wichtigkeit der Protein-Metall Bindungen und ihrer Dynamik für die mechanische Funktion lasttragender Proteinfasern, wie dem Byssus der Miesmuscheln. KW - biomaterials KW - self-healing materials KW - protein-metal interaction KW - Biomaterialien KW - selbstheilende Materialien KW - Protein-Metall-Wechselwirkung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74216 ER -