TY - GEN A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1165 KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522985 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus JF - Antioxidants N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - https://doi.org/10.3390/antiox10050711 SN - 2076-3921 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Hauffe, Robert A1 - Rath, Michaela A1 - Schell, Mareike A1 - Ritter, Katrin A1 - Kappert, Kai A1 - Deubel, Stefanie A1 - Ott, Christiane A1 - Jähnert, Markus A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Kleinridders, André T1 - HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/−) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/− mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/− mice in a glucose tolerance test. However, Hsp60+/− mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1235 KW - Mitochondria KW - Stress response KW - Obesity KW - Glucose homeostasis KW - Insulin resistance KW - Adipose tissue Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548002 SN - 1866-8372 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Hauffe, Robert A1 - Rath, Michaela A1 - Schell, Mareike A1 - Ritter, Katrin A1 - Kappert, Kai A1 - Deubel, Stefanie A1 - Ott, Christiane A1 - Jähnert, Markus A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Kleinridders, André T1 - HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue JF - Molecular Metabolism N2 - Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/−) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/− mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/− mice in a glucose tolerance test. However, Hsp60+/− mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance. KW - Mitochondria KW - Stress response KW - Obesity KW - Glucose homeostasis KW - Insulin resistance KW - Adipose tissue Y1 - 2021 U6 - https://doi.org/10.1016/j.molmet.2021.101276 SN - 2212-8778 VL - 53 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam, Niederlande ER - TY - JOUR A1 - Schell, Mareike A1 - Chudoba, Chantal A1 - Leboucher, Antoine A1 - Alfine, Eugenia A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Weiper, Katharina A1 - Wernitz, Andreas A1 - Henkel, Janin A1 - Kleinridders, André T1 - Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action JF - Nutrients N2 - Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation. KW - cholesterol KW - insulin signaling KW - mitochondria KW - brain KW - inflammation KW - fatty acids KW - JNK KW - insulin receptor Y1 - 2020 U6 - https://doi.org/10.3390/nu12051518 SN - 2072-6643 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Schell, Mareike A1 - Chudoba, Chantal A1 - Leboucher, Antoine A1 - Alfine, Eugenia A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Weiper, Katharina A1 - Wernitz, Andreas A1 - Henkel, Janin A1 - Kleinridders, André T1 - Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 946 KW - cholesterol KW - insulin signaling KW - mitochondria KW - brain KW - inflammation KW - fatty acids KW - JNK KW - insulin receptor Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-470773 SN - 1866-8372 IS - 946 ER - TY - THES A1 - Schell, Mareike T1 - Investigating the effect of Lactobacillus rhamnosus GG on emotional behavior in diet-induced obese C57BL/6N mice T1 - Untersuchung der Wirkung von Lactobacillus rhamnosus GG bei Störungen des emotionalen Verhaltens in einem Mausmodell Diät-induzierter Adipositas N2 - The prevalence of depression and anxiety is increased in obese patients compared to healthy humans, which is partially due to a shared pathogenesis, including insulin resistance and inflammation. These factors are also linked to intestinal dysbiosis. Additionally, the chronic consumption of diets rich in saturated fats results in body weight gain, hormonal resistances and unfavorable changes in the microbiome composition. The intake of Lactobacilli has already been shown to improve dysbiosis along with metabolism and mood. Yet, the beneficial role and the underlying mechanism of Lactobacillus rhamnosus GG (LGG) to improve emotional behavior in established diet-induced obese conditions are, so far, unknown. To characterize the role of LGG in diet-induced obesity, female and male C57BL/6N mice were fed a semi-synthetic low-fat diet (LFD, 10 % kcal from fat) or a conventional high-fat diet (HFD, 45 % kcal from fat) for initial 6 weeks, which was followed by daily oral gavage of vehicle or 1x10^8 CFU of LGG until the end of the experiment. Mice were subjected to basic metabolic and extensive behavioral phenotyping, with a focus on emotional behavior. Moreover, composition of cecal gut microbiome, metabolomic profile in plasma and cerebrospinal fluid was investigated and followed by molecular analyses. Both HFD-feeding and LGG application resulted in sex-specific differences. While LGG prevented the increase of plasma insulin, adrenal gland weight and hyperactivity in diet-induced obese female mice, there was no regulation of anxiodepressive-like behavior. In contrast, metabolism of male mice did not benefit from LGG application, but strikingly, LGG decreased specifically depressive-like behavior in the Mousetail Suspension Test which was confirmed by the Splash Test characterizing motivation for ’self-care’. The microbiome analysis in male mice revealed that HFD-feeding, but not LGG application, altered cecal microbiome composition, indicating a direct effect of LGG on behavioral regulation. However, in female mice, both HFD-feeding and LGG application resulted in changes of microbiome composition, which presumably affected metabolism. Moreover, as diet-induced obese female mice unexpectedly did not exhibit anxiodepressive-like behavior, follow-up analyses were conducted in male mice. Here, HFD-feeding significantly altered abundance of plasma lipids whereas LGG decreased branched chain amino acids which associated with improved emotional behavior. In nucleus accumbens (NAcc) and VTA/SN, which belong to the dopaminergic system, LGG restored HFD-induced decrease of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, on gene expression level. Lastly, transcriptome analysis in the NAcc identified gene expression of cholecystokinin as a potential mediator of the effect of LGG on HFD-induced emotional alterations. In summary, this thesis revealed the beneficial effects of LGG application on emotional alterations in established diet-induced obesity. Furthermore, both HFD-feeding and LGG treatment exhibited sex-specific effects, resulting in metabolic improvements in female mice while LGG application mitigated depressive-like behavior in obese male mice along with a molecular signature of restored dopamine synthesis and neuropeptide signaling. N2 - n adipösen Patienten liegt eine erhöhte Prävalenz von Depressionen und Angsterkrankungen vor. Dies liegt unter anderem an einer gemeinsamen Pathogenese, der eine Insulinresistenz sowie ein chronischer Entzündungszustand zugrunde liegen. Diese Faktoren sind mit einer intestinalen Dysbiose assoziiert, die auch durch eine Fehlernährung, beispielsweise mit einer fettreichen Diät, hervorgerufen werden kann. Es konnte bereits gezeigt werden, dass die Aufnahme von Laktobazillen nicht nur eine Dysbiose und den Stoffwechsel verbessert, sondern sich auch positiv auf das Gemüt auswirken kann. Ob jedoch Lactobacillus rhamnosus GG in der Lage ist, in einem Zustand der etablierten ernährungsbedingten Fettleibigkeit das emotionale Verhalten zu verbessern und welche Mechanismen zugrunde liegen, ist noch ungeklärt. Um die Rolle von LGG bei ernährungsbedingter Fettleibigkeit zu charakterisieren, wurden weibliche und männliche C57BL/6N Mäuse mit einer semi-synthetischen Niedrigfettdiät (LFD, 10 % kcal aus Fett) oder einer konventionellen Hochfettdiät (HFD, 45 % kcal aus Fett) für die ersten 6 Wochen gefüttert, um den Zustand einer Adipositas zu etablieren. Anschließend haben die Mäuse eine tägliche perorale Applikation eines Vehikels oder 1x10^8 KBE LGG bis zum Versuchsende erhalten. Die Mäuse wurden einer allgemeinen metabolischen Charakterisierung und einer umfassenden Verhaltensphänotypisierung unterzogen, die Aufschlüsse über das emotionale Verhalten liefern sollen. Darüber hinaus wurde die Zusammensetzung des Darmmikrobioms bestimmt, im Plasma und in der Zerebrospinalflüssigkeit das Metabolitprofil untersucht und durch molekulare Analysen ergänzt. Sowohl die HFD-Fütterung als auch die LGG-Applikation führten zu geschlechtsspezifischen Unterschieden. Während LGG den diätinduzierten Anstieg von Plasmainsulin, ein erhöhtes Nebennierengewicht und Hyperaktivität in weiblichen Mäusen verhinderte, wurde das emotionale Verhalten nicht reguliert. Im Gegensatz dazu profitierte der Stoffwechsel männlicher Mäuse nicht von der LGG-Anwendung, jedoch war LGG in der Lage, spezifisch das depressiv-ähnliches Verhalten zu verbessern, was durch eine Analyse des zielgerichteten Verhaltens bestätigt wurde. Die Mikrobiomanalyse ergab, dass die Diät, jedoch nicht LGG, die Zusammensetzung des Darmmikrobioms in männlichen Mäusen verändert, was auf eine direkte Rolle von LGG in der Verhaltensregulation hindeutet. Im Vergleich dazu war das Darmmikrobiom in weiblichen Mäusen durch die Diät als auch durch LGG verändert, was zu den positiven Veränderungen der Stoffwechselparameter geführt haben könnte. Da weibliche Mäuse weder durch die HFD-Fütterung noch durch die LGG-Gabe einen Effekt auf emotionales Verhalten aufwiesen, wurden die Folgeanalysen bei männlichen Mäusen durchgeführt. Während die HFD-Fütterung das Vorkommen von Plasmalipiden veränderte, lagen aufgrund der LGG-Gabe verzweigtkettige Aminosäuren verringert vor, was mit einem verbessertem emotionalen Verhalten assoziierte. In den dopaminergen Gehirnregionen Nucleus Accumbens (NAcc) und VTA/SN revertierte LGG die HFD-induzierte Reduktion der Tyrosinhydroxylase Genexpression, des geschwindigkeitsbegrenzenden Enzyms in der Dopaminsynthese. Abschließend wurde eine Transkriptomanalyse mittels RNA Sequencing durchgeführt, welche die Genexpression von Cholezystokinin im NAcc als potenzieller Mediator in der Wirkung von LGG bei HFD-induzierten emotionalen Veränderungen identifizierte. Zusammenfassend konnten in dieser Arbeit die positiven Auswirkungen der LGG-Gabe auf emotionales Verhalten bei etablierter ernährungsbedingter Fettleibigkeit gezeigt werden.. Sowohl die HFD-Fütterung als auch die LGG-Gabe führten zu geschlechtsspezifischen Effekten, was zu Stoffwechselverbesserungen bei weiblichen Mäusen führte, während die LGG-Gabe das depressiv-ähnliche Verhalten bei männlichen Mäusen abschwächte. Zudem wurden auf Genexpressionsebene Tyrosinhydroxylase und Cholezystokinin identifiziert, die potentiell den Effekt von LGG auf das emotionale Verhalten in einem Modell etablierter ernährungsbedingter Fettleibigkeit vermitteln. KW - obesity KW - insulin resistance KW - probiotics KW - lactobacillus KW - depression KW - emotionality Y1 - 2022 ER - TY - JOUR A1 - Schell, Mareike A1 - Wardelmann, Kristina A1 - Kleinridders, Andre T1 - Untangling the effect of insulin action on brain mitochondria and metabolism JF - Journal of neuroendocrinology N2 - The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases. KW - brain KW - energy homeostasis KW - inflammation KW - insulin signalling KW - metabolism KW - mitochondrial function Y1 - 2021 U6 - https://doi.org/10.1111/jne.12932 SN - 0953-8194 SN - 1365-2826 VL - 33 IS - 4 PB - Wiley CY - Hoboken ER -