TY - JOUR A1 - Toenjes, Ralf A1 - Sokolov, Igor M. A1 - Postnikov, E. B. T1 - Non-spectral relaxation in one dimensional Ornstein-Uhlenbeck processes JF - Physical review letters N2 - The relaxation of a dissipative system to its equilibrium state often shows a multiexponential pattern with relaxation rates, which are typically considered to be independent of the initial condition. The rates follow from the spectrum of a Hermitian operator obtained by a similarity transformation of the initial Fokker-Planck operator. However, some initial conditions are mapped by this similarity transformation to functions which growat infinity. These cannot be expanded in terms of the eigenfunctions of a Hermitian operator, and show different relaxation patterns. Considering the exactly solvable examples of Gaussian and generalized Levy Ornstein-Uhlenbeck processes (OUPs) we show that the relaxation rates belong to the Hermitian spectrum only if the initial condition belongs to the domain of attraction of the stable distribution defining the noise. While for an ordinary OUP initial conditions leading to nonspectral relaxation can be considered exotic, for generalized OUPs driven by Levy noise, such initial conditions are the rule. DOI: 10.1103/PhysRevLett.110.150602 Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevLett.110.150602 SN - 0031-9007 VL - 110 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Toenjes, Ralf A1 - Blasius, Bernd T1 - Perturbation analysis of complete synchronization in networks of phase oscillators N2 - The behavior of weakly coupled self-sustained oscillators can often be well described by phase equations. Here we use the paradigm of Kuramoto phase oscillators which are coupled in a network to calculate first- and second-order corrections to the frequency of the fully synchronized state for nonidentical oscillators. The topology of the underlying coupling network is reflected in the eigenvalues and eigenvectors of the network Laplacian which influence the synchronization frequency in a particular way. They characterize the importance of nodes in a network and the relations between them. Expected values for the synchronization frequency are obtained for oscillators with quenched random frequencies on a class of scale-free random networks and for a Erdoumls-Reacutenyi random network. We briefly discuss an application of the perturbation theory in the second order to network structural analysis. Y1 - 2009 UR - http://pre.aps.org/ U6 - https://doi.org/10.1103/Physreve.80.026202 SN - 1539-3755 ER - TY - JOUR A1 - Toenjes, Ralf A1 - Blasius, Bernd T1 - Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder N2 - The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point. Y1 - 2009 UR - http://pre.aps.org/ U6 - https://doi.org/10.1103/Physreve.79.016112 SN - 1539-3755 ER - TY - JOUR A1 - Blasius, Bernd A1 - Toenjes, Ralf T1 - Quasiregular concentric waves in heterogeneous lattices of coupled oscillators N2 - We study the pattern formation in a lattice of locally coupled phase oscillators with quenched disorder. In the synchronized regime quasi regular concentric waves can arise which are induced by the disorder of the system. Maximal regularity is found at the edge of the synchronization regime. The emergence of the concentric waves is related to the symmetry breaking of the interaction function. An explanation of the numerically observed phenomena is given in a one- dimensional chain of coupled phase oscillators. Scaling properties, describing the target patterns are obtained. Y1 - 2005 UR - http://www.agnld.uni-potsdam.de/~bernd/papers/prl1.pdf ER - TY - JOUR A1 - Gong, Chen Chris A1 - Zheng, Chunming A1 - Toenjes, Ralf A1 - Pikovskij, Arkadij T1 - Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider the Kuramoto-Sakaguchi model of identical coupled phase oscillators with a common noisy forcing. While common noise always tends to synchronize the oscillators, a strong repulsive coupling prevents the fully synchronous state and leads to a nontrivial distribution of oscillator phases. In previous numerical simulations, the formation of stable multicluster states has been observed in this regime. However, we argue here that because identical phase oscillators in the Kuramoto-Sakaguchi model form a partially integrable system according to the Watanabe-Strogatz theory, the formation of clusters is impossible. Integrating with various time steps reveals that clustering is a numerical artifact, explained by the existence of higher order Fourier terms in the errors of the employed numerical integration schemes. By monitoring the induced change in certain integrals of motion, we quantify these errors. We support these observations by showing, on the basis of the analysis of the corresponding Fokker-Planck equation, that two-cluster states are non-attractive. On the other hand, in ensembles of general limit cycle oscillators, such as Van der Pol oscillators, due to an anharmonic phase response function as well as additional amplitude dynamics, multiclusters can occur naturally. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5084144 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 3 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Toenjes, Ralf A1 - Sokolov, Igor M. A1 - Postnikov, Eugene B. T1 - Spectral properties of the fractional Fokker-Planck operator for the Levy flight in a harmonic potential JF - The European physical journal N2 - We present a detailed analysis of the eigenfunctions of the Fokker-Planck operator for the LevyOrnstein- Uhlenbeck process, their asymptotic behavior and recurrence relations, explicit expressions in coordinate space for the special cases of the Ornstein-Uhlenbeck process with Gaussian and with Cauchy white noise and for the transformation kernel, which maps the fractional Fokker-Planck operator of the Cauchy-Ornstein-Uhlenbeck process to the non-fractional Fokker-Planck operator of the usual Gaussian Ornstein-Uhlenbeck process. We also describe how non-spectral relaxation can be observed in bounded random variables of the Levy-Ornstein-Uhlenbeck process and their correlation functions. Y1 - 2014 U6 - https://doi.org/10.1140/epjb/e2014-50558-5 SN - 1434-6028 SN - 1434-6036 VL - 87 IS - 12 PB - Springer CY - New York ER - TY - JOUR A1 - Zheng, Chunming A1 - Toenjes, Ralf A1 - Pikovskij, Arkadij T1 - Transition to synchrony in a three-dimensional swarming model with helical trajectories JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We investigate the transition from incoherence to global collective motion in a three-dimensional swarming model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.014216 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Blasius, Bernd A1 - Toenjes, Ralf T1 - Zipf's Law in the popularity distribution of chess openings N2 - We perform a quantitative analysis of extensive chess databases and show that the frequencies of opening moves are distributed according to a power law with an exponent that increases linearly with the game depth, whereas the pooled distribution of all opening weights follows Zipf's law with universal exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of hierarchical fragmentation the scaling is truly universal and independent of a particular generating mechanism. Our findings are of relevance in general processes with composite decisions. Y1 - 2009 UR - http://prl.aps.org/ U6 - https://doi.org/10.1103/Physrevlett.103.218701 SN - 0031-9007 ER -