TY - JOUR A1 - Olejko, Lydia A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures JF - Nanoscale N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Förster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. KW - resonance energy-transfer KW - g-quadruplex KW - quantum dots KW - strand breakage KW - photonic wires KW - 3-color fret KW - nanostructures KW - recognition KW - sensitivity KW - assemblies Y1 - 2016 U6 - https://doi.org/10.1039/C6NR00119J SN - 2040-3372 SN - 2040-3364 VL - 8 SP - 10339 EP - 10347 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, P. J. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures JF - Nanoscale N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Forster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. Y1 - 2016 U6 - https://doi.org/10.1039/c6nr00119j SN - 2040-3364 SN - 2040-3372 VL - 8 SP - 10339 EP - 10347 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Oertel, Jana A1 - Keller, Adrian A1 - Prinz, Julia A1 - Schreiber, Benjamin A1 - Huebner, Rene A1 - Kerbusch, Jochen A1 - Bald, Ilko A1 - Fahmy, Karim T1 - Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion JF - Scientific reports N2 - Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of similar to 10 nm diameter containing a lipid bilayer similar to 5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. Y1 - 2016 U6 - https://doi.org/10.1038/srep26718 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Meiling, Till Thomas A1 - Cywiński, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. KW - Fluorescence spectroscopy KW - Nanoparticles KW - Synthesis and processing Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Meiling, Till T. A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (> 1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Matkovic, Aleksandar A1 - Vasic, Borislav A1 - Pesic, Jelena A1 - Prinz, Julia A1 - Bald, Ilko A1 - Milosavljevic, Aleksandar R. A1 - Gajic, Rados T1 - Enhanced structural stability of DNA origami nanostructures by graphene encapsulation JF - NEW JOURNAL OF PHYSICS N2 - We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. KW - graphene KW - DNA origami nanostructures KW - atomic force microscopy Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/025016 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER -