TY - JOUR A1 - Wang, Ting A1 - Tohge, Takayuki A1 - Ivakov, Alexander A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair A1 - Mutwil, Marek A1 - Schippers, Jos H. M. A1 - Persson, Staffan T1 - Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance. Y1 - 2015 U6 - https://doi.org/10.1104/pp.15.00962 SN - 0032-0889 SN - 1532-2548 VL - 169 IS - 2 SP - 1027 EP - + PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Voelker, Camilla A1 - Gomez-Porras, Judith Lucia A1 - Becker, Dirk A1 - Hamamoto, Shin A1 - Uozumi, Nobuyuki A1 - Gambale, Franco A1 - Müller-Röber, Bernd A1 - Czempinski, Katrin A1 - Dreyer, Ingo T1 - Roles of tandem-pore K plus channels in plants : a puzzle still to be solved N2 - The group of voltage-independent K+ channels in Arabidopsis thaliana consists of six members, five tandem-pore channels (TPK1-TPK5) and a single K-ir-like channel (KCO3). All TPK/KCO channels are located at the vacuolar membrane except for TPK4, which was shown to be a plasma membrane channel in pollen. The vacuolar channels interact with 14-3-3 proteins (also called General Regulating Factors, GRFs), indicating regulation at the level of protein-protein interactions. Here we review current knowledge about these ion channels and their genes, and highlight open questions that need to be urgently addressed in future studies to fully appreciate the physiological functions of these ion channels. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=1435-8603 U6 - https://doi.org/10.1111/j.1438-8677.2010.00353.x SN - 1435-8603 ER - TY - JOUR A1 - Tabatabaei, Iman A1 - Alseekh, Saleh A1 - Shahid, Mohammad A1 - Leniak, Ewa A1 - Wagner, Mateusz A1 - Mahmoudi, Henda A1 - Thushar, Sumitha A1 - Fernie, Alisdair A1 - Murphy, Kevin M. A1 - Schmöckel, Sandra M. A1 - Tester, Mark A1 - Müller-Röber, Bernd A1 - Skirycz, Aleksandra A1 - Balazadeh, Salma T1 - The diversity of quinoa morphological traits and seed metabolic composition JF - Scientific data N2 - Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa. Y1 - 2022 U6 - https://doi.org/10.1038/s41597-022-01399-y SN - 2052-4463 VL - 9 IS - 1 PB - Nature Research CY - Berlin ER - TY - GEN A1 - Szarzynska, Bogna A1 - Sobkowiak, Lukasz A1 - Pant, Bikram Datt A1 - Balazadeh, Salma A1 - Scheible, Wolf-Rüdiger A1 - Müller-Röber, Bernd A1 - Jarmolowski, Artur A1 - Szweykowska-Kulinska, Zofia T1 - Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs N2 - Arabidopsis thaliana HYL1 is a nuclear doublestranded RNA-binding protein involved in the maturation of pri-miRNAs. A quantitative real-time PCR platform for parallel quantification of 176 primiRNAs was used to reveal strong accumulation of 57 miRNA precursors in the hyl1 mutant that completely lacks HYL1 protein. This approach enabled us for the first time to pinpoint particular members of MIRNA family genes that require HYL1 activity for efficient maturation of their precursors. Moreover, the accumulation of miRNA precursors in the hyl1 mutant gave us the opportunity to carry out 3’ and 5’ RACE experiments which revealed that some of these precursors are of unexpected length. The alignment of HYL1- dependent miRNA precursors to A. thaliana genomic sequences indicated the presence of introns in 12 out of 20 genes studied. Some of the characterized intron-containing pri-miRNAs undergo alternative splicing such as exon skipping or usage of alternative 5’ splice sites suggesting that this process plays a role in the regulation of miRNA biogenesis. In the hyl1 mutant intron-containing pri-miRNAs accumulate alongside spliced primiRNAs suggesting the recruitment of HYL1 into the miRNA precursor maturation pathway before their splicing occurs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 138 KW - Binding-protein hyl1 KW - Abscisic-acid KW - Flowering time KW - Micro-RNA KW - Serrate Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45085 ER - TY - JOUR A1 - Sree, K. Sowjanya A1 - Keresztes, Aron A1 - Müller-Röber, Bernd A1 - Brandt, Ronny A1 - Eberius, Matthias A1 - Fischer, Wolfgang A1 - Appenroth, Klaus-J. T1 - Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation JF - Chemosphere : chemistry, biology and toxicology as related to environmental problems N2 - Cobalt (Co2+) inhibits vegetative growth of Lemna minor gradually from 1 mu M to 100 mu M. Fronds accumulated up to 21 mg Co2+ g(-1) dry weight at 10 mu M external Co2+ indicating hyperaccumulation. Interestingly, accumulation of Co2+ did not decrease the iron (Fe) content in fronds, highlighting L. minor as a suitable system for studying effects of Co2+ undisturbed by Fe deficiency symptoms unlike most other plants. Digital image analysis revealed the size distribution of fronds after Co2+ treatment and also a reduction in pigmentation of newly formed daughter fronds unlike the mother fronds during the 7-day treatment. Neither chlorophyll nor photosystem II fluorescence changed significantly during the initial 4 d, indicating effective photosynthesis. During the later phase of the 7-day treatment, however, chlorophyll content and photosynthetic efficiency decreased in the Co2+-treated daughter fronds, indicating that Co2+ inhibits the biosynthesis of chlorophyll rather than leading to the destruction of pre-existing pigment molecules. In addition, during the first 4 d of Co2+ treatment starch accumulated in the fronds and led to the transition of chloroplasts to chloro-amyloplasts and amylo-chloroplasts, while starch levels strongly decreased thereafter. (C) 2015 Elsevier Ltd. All rights reserved. KW - Chloroplast KW - Cobalt KW - Lemnaceae KW - Lemna minor KW - Phytotoxicity KW - Starch accumulation Y1 - 2015 U6 - https://doi.org/10.1016/j.chemosphere.2015.03.008 SN - 0045-6535 SN - 1879-1298 VL - 131 SP - 149 EP - 156 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Skirycz, Aleksandra A1 - Reichelt, Michael A1 - Burow, Meike A1 - Birkemeyer, Claudia Sabine A1 - Rolcik, Jacub A1 - Kopka, Joachim A1 - Zanor, Maria Ines A1 - Gershenzon, Jonathan A1 - Strnad, Miroslav A1 - Szopa, Jan A1 - Müller-Röber, Bernd A1 - Witt, Isabell T1 - DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis N2 - Glucosinolates are a group of secondary metabolites that function as defense substances against herbivores and micro-organisms in the plant order Capparales. Indole glucosinolates (IGS), derivatives of tryptophan, may also influence plant growth and development. In Arabidopsis thaliana, indole-3-acetaldoxime (IAOx) produced from tryptophan by the activity of two cytochrome P450 enzymes, CYP79B2 and CYP79B3, serves as a precursor for IGS biosynthesis but is also an intermediate in the biosynthetic pathway of indole-3-acetic acid (IAA). Another cytochrome P450 enzyme, CYP83B1, funnels IAOx into IGS. Although there is increasing information about the genes involved in this biochemical pathway, their regulation is not fully understood. OBP2 has recently been identified as a member of the DNA-binding-with-one- finger (DOF) transcription factors, but its function has not been studied in detail so far. Here we report that OBP2 is expressed in the vasculature of all Arabidopsis organs, including leaves, roots, flower stalks and petals. OBP2 expression is induced in response to a generalist herbivore, Spodoptera littoralis, and by treatment with the plant signalling molecule methyl jasmonate, both of which also trigger IGS accumulation. Constitutive and inducible over- expression of OBP2 activates expression of CYP83B1. In addition, auxin concentration is increased in leaves and seedlings of OBP2 over-expression lines relative to wild-type, and plant size is diminished due to a reduction in cell size. RNA interference-mediated OBP2 blockade leads to reduced expression of CYP83B1. Collectively, these data provide evidence that OBP2 is part of a regulatory network that regulates glucosinolate biosynthesis in Arabidopsis Y1 - 2006 UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02767.x/full ER - TY - JOUR A1 - Shubchynskyy, Volodymyr A1 - Boniecka, Justyna A1 - Schweighofer, Alois A1 - Simulis, Justinas A1 - Kvederaviciute, Kotryna A1 - Stumpe, Michael A1 - Mauch, Felix A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Boutrot, Freddy A1 - Zipfel, Cyril A1 - Meskiene, Irute T1 - Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae JF - Journal of experimental botany N2 - Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance. KW - Callose KW - defense genes KW - MAPK KW - MAPK phosphatase KW - PAMP KW - PP2C phosphatase KW - Pseudomonas syringae KW - salicylic acid KW - transcription factors Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erw485 SN - 0022-0957 SN - 1460-2431 VL - 68 IS - 5 SP - 1169 EP - 1183 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sharma, Niharika A1 - Dang, Trang Minh A1 - Singh, Namrata A1 - Ruzicic, Slobodan A1 - Müller-Röber, Bernd A1 - Baumann, Ute A1 - Heuer, Sigrid T1 - Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice JF - Rice N2 - Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance. KW - Submergence tolerance KW - SUB1A KW - Rice KW - Transcription factors Y1 - 2018 U6 - https://doi.org/10.1186/s12284-017-0192-z SN - 1939-8425 SN - 1939-8433 VL - 11 IS - 2 PB - Springer Open CY - London ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Schulz, Karina A1 - Müller-Röber, Bernd A1 - Sampathkumar, Arun A1 - Balazadeh, Salma T1 - Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery JF - The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology N2 - Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory. KW - Arabidopsis thaliana KW - ATI1 KW - FtsH6 KW - heat stress KW - HSP21 KW - plastid KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2021 U6 - https://doi.org/10.1093/jxb/erab304 SN - 0022-0957 SN - 1460-2431 VL - 72 IS - 21 SP - 7498 EP - 7513 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis JF - Nature Communications N2 - Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory’ but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms12439 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Welker, Annelie A1 - Mieulet, Delphine A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp japonica JF - AoB PLANTS N2 - Background and aims Salt stress leads to attenuated growth and productivity in rice. Transcription factors like heat shock factors (HSFs) represent central regulators of stress adaptation. Heat shock factors of the classes A and B are well established as regulators of thermal and non-thermal stress responses in plants; however, the role of class C HSFs is unknown. Here we characterized the function of the OsHsfC1b (Os01g53220) transcription factor from rice. Methodology We analysed the expression of OsHsfC1b in the rice japonica cultivars Dongjin and Nipponbare exposed to salt stress as well as after mannitol, abscisic acid (ABA) and H2O2 treatment. For functional characterization of OsHsfC1b, we analysed the physiological response of a T-DNA insertion line (hsfc1b) and two artificial micro-RNA (amiRNA) knock-down lines to salt, mannitol and ABA treatment. In addition, we quantified the expression of small Heat Shock Protein (sHSP) genes and those related to signalling and ion homeostasis by quantitative real-time polymerase chain reaction in roots exposed to salt. The subcellular localization of OsHsfC1b protein fused to green fluorescent protein (GFP) was determined in Arabidopsis mesophyll cell protoplasts. Principal results Expression of OsHsfC1b was induced by salt, mannitol and ABA, but not by H2O2. Impaired function of OsHsfC1b in the hsfc1b mutant and the amiRNA lines led to decreased salt and osmotic stress tolerance, increased sensitivity to ABA, and temporal misregulation of salt-responsive genes involved in signalling and ion homeostasis. Furthermore, sHSP genes showed enhanced expression in knock-down plants under salt stress. We observed retarded growth of hsfc1b and knock-down lines in comparison with control plants under non-stress conditions. Transient expression of OsHsfC1b fused to GFP in protoplasts revealed nuclear localization of the transcription factor. Conclusions OsHsfC1b plays a role in ABA-mediated salt stress tolerance in rice. Furthermore, OsHsfC1b is involved in the response to osmotic stress and is required for plant growth under non-stress conditions. Y1 - 2012 U6 - https://doi.org/10.1093/aobpla/pls011 SN - 2041-2851 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Mieulet, Delphine A1 - Watanabe, Mutsumi A1 - Hoefgen, Rainer A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Salt-Rresponsive ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice JF - Molecular plant N2 - Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF. KW - RPBF KW - rice KW - grain filling KW - germination KW - SERF1 KW - gibberellic acid Y1 - 2014 U6 - https://doi.org/10.1093/mp/sst131 SN - 1674-2052 SN - 1752-9867 VL - 7 IS - 2 SP - 404 EP - 421 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Mieulet, Delphine A1 - Obata, Toshihiro A1 - Fernie, Alisdair A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Multipass, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways JF - The plant journal N2 - Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. KW - development KW - expansin KW - transcription KW - Oryza sativa KW - hormone KW - abiotic stress Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12286 SN - 0960-7412 SN - 1365-313X VL - 76 IS - 2 SP - 258 EP - 273 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schmidt, Romy A1 - Mieulet, Delphine A1 - Hubberten, Hans-Michael A1 - Obata, Toshihiro A1 - Höfgen, Rainer A1 - Fernie, Alisdair A1 - Fisahn, Joachim A1 - Segundo, Blanca San A1 - Guiderdoni, Emmanuel A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice JF - The plant cell N2 - Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified SALT-RESPONSIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance-mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK KINASE KINASE6 (MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELEMENT BINDING2A (DREB2A), and ZINC FINGER PROTEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species-activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.113068 SN - 1040-4651 VL - 25 IS - 6 SP - 2115 EP - 2131 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Schippers, Jos H. M. A1 - Nguyen, Hung M. A1 - Lu, Dandan A1 - Schmidt, Romy A1 - Müller-Röber, Bernd T1 - ROS homeostasis during development: an evolutionary conserved strategy JF - Cellular and molecular life sciences N2 - The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator. KW - Evolution KW - Reactive oxygen species KW - Development Y1 - 2012 U6 - https://doi.org/10.1007/s00018-012-1092-4 SN - 1420-682X VL - 69 IS - 19 SP - 3245 EP - 3257 PB - Springer CY - Basel ER - TY - JOUR A1 - Rohrmann, Johannes A1 - Tohge, Takayuki A1 - Alba, Rob A1 - Osorio, Sonia A1 - Caldana, Camila A1 - McQuinn, Ryan A1 - Arvidsson, Samuel Janne A1 - van der Merwe, Margaretha J. A1 - Riano-Pachon, Diego Mauricio A1 - Müller-Röber, Bernd A1 - Fei, Zhangjun A1 - Nesi, Adriano Nunes A1 - Giovannoni, James J. A1 - Fernie, Alisdair T1 - Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development JF - The plant journal N2 - Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes. KW - transcription factor KW - Solanum lycopersicum KW - quantitative RT-PCR KW - microarray KW - metabolomics KW - fleshy fruit ripening Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-313X.2011.04750.x SN - 0960-7412 VL - 68 IS - 6 SP - 999 EP - 1013 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Ribeiro, Dimas M. A1 - Araujo, Wagner L. A1 - Fernie, Alisdair A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Action of Gibberellins on growth and metabolism of arabidopsis plants Associated with high concentration of carbon dioxide JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Although the positive effect of elevated CO2 concentration [CO2] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO2]. Here, we studied the impact of elevated [CO2] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO2] (350 mu mol CO2 mol(-1)) was reverted by elevated [CO2] (750 mu mol CO2 mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO2]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO2], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO2], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO2]. These results suggest that only under ambient [CO2] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions. Y1 - 2012 U6 - https://doi.org/10.1104/pp.112.204842 SN - 0032-0889 VL - 160 IS - 4 SP - 1781 EP - 1794 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Ribeiro, Dimas M. A1 - Araujo, Wagner L. A1 - Fernie, Alisdair A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis JF - Journal of experimental botany N2 - Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA(3)) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA(3). However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA(3) alone, or PAC plus GA(3). Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism. KW - Gibberellin KW - growth KW - paclobutrazol KW - primary metabolism KW - translatome Y1 - 2012 U6 - https://doi.org/10.1093/jxb/err463 SN - 0022-0957 VL - 63 IS - 7 SP - 2769 EP - 2786 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Riano-Pachon, Diego Mauricio A1 - Nagel, Axel A1 - Neigenfind, Jost A1 - Wagner, Robert A1 - Basekow, Rico A1 - Weber, Elke A1 - Müller-Röber, Bernd A1 - Diehl, Svenja A1 - Kersten, Birgit T1 - GabiPD : the GABI primary database - a plant integrative "omics" database N2 - The GABI Primary Database, GabiPD (http:// www.gabipd.org/), was established in the frame of the German initiative for Genome Analysis of the Plant Biological System (GABI). The goal of GabiPD is to collect, integrate, analyze and visualize primary information from GABI projects. GabiPD constitutes a repository and analysis platform for a wide array of heterogeneous data from high-throughput experiments in several plant species. Data from different ‘omics’ fronts are incorporated (i.e. genomics, transcriptomics, proteomics and metabolomics), originating from 14 different model or crop species. We have developed the concept of GreenCards for textbased retrieval of all data types in GabiPD (e.g. clones, genes, mutant lines). All data types point to a central Gene GreenCard, where gene information is integrated from genome projects or NCBI UniGene sets. The centralized Gene GreenCard allows visualizing ESTs aligned to annotated transcripts as well as displaying identified protein domains and gene structure. Moreover, GabiPD makes available interactive genetic maps from potato and barley, and protein 2DE gels from Arabidopsis thaliana and Brassica napus. Gene expression and metabolic-profiling data can be visualized through MapManWeb. By the integration of complex data in a framework of existing knowledge, GabiPD provides new insights and allows for new interpretations of the data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 137 KW - Phosphorylation sites KW - Arabidopsis thaliana KW - Information KW - Proteins KW - Families Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45075 ER - TY - JOUR A1 - Riano-Pachon, Diego Mauricio A1 - Dreyer, Ingo A1 - Müller-Röber, Bernd T1 - Orphan transcripts in Arabidopsis thaliana : identification of several hundred previously unrecognized genes N2 - Expressed sequence tags (ESTs) represent a huge resource for the discovery of previously unknown genetic information and functional genome assignment. In this study we screened a collection of 178 292 ESTs from Arabidopsis thaliana by testing them against previously annotated genes of the Arabidopsis genome. We identified several hundreds of new transcripts that match the Arabidopsis genome at so far unassigned loci. The transcriptional activity of these loci was independently confirmed by comparison with the Salk Whole Genome Array Data. To a large extent, the newly identified transcriptionally active genomic regions do not encode 'classic' proteins, but instead generate non-coding RNAs and/or small peptide-coding RNAs of presently unknown biological function. More than 560 transcripts identified in this study are not represented by the Affymetrix GeneChip arrays currently widely used for expression profiling in A. thaliana. Our data strongly support the hypothesis that numerous previously unknown genes exist in the Arabidopsis genome Y1 - 2005 SN - 0960-7412 ER -