TY - JOUR A1 - Zurell, Damaris A1 - von Wehrden, Henrik A1 - Rotics, Shay A1 - Kaatz, Michael A1 - Gross, Helge A1 - Schlag, Lena A1 - Schäfer, Merlin A1 - Sapir, Nir A1 - Turjeman, Sondra A1 - Wikelski, Martin A1 - Nathan, Ran A1 - Jeltsch, Florian T1 - Home range size and resource use of breeding and non-breeding white storks along a land use gradient JF - Frontiers in Ecology and Evolution N2 - Biotelemetry is increasingly used to study animal movement at high spatial and temporal resolution and guide conservation and resource management. Yet, limited sample sizes and variation in space and habitat use across regions and life stages may compromise robustness of behavioral analyses and subsequent conservation plans. Here, we assessed variation in (i) home range sizes, (ii) home range selection, and (iii) fine-scale resource selection of white storks across breeding status and regions and test model transferability. Three study areas were chosen within the Central German breeding grounds ranging from agricultural to fluvial and marshland. We monitored GPS-locations of 62 adult white storks equipped with solar-charged GPS/3D-acceleration (ACC) transmitters in 2013-2014. Home range sizes were estimated using minimum convex polygons. Generalized linear mixed models were used to assess home range selection and fine-scale resource selection by relating the home ranges and foraging sites to Corine habitat variables and normalized difference vegetation index in a presence/pseudo-absence design. We found strong variation in home range sizes across breeding stages with significantly larger home ranges in non-breeding compared to breeding white storks, but no variation between regions. Home range selection models had high explanatory power and well predicted overall density of Central German white stork breeding pairs. Also, they showed good transferability across regions and breeding status although variable importance varied considerably. Fine-scale resource selection models showed low explanatory power. Resource preferences differed both across breeding status and across regions, and model transferability was poor. Our results indicate that habitat selection of wild animals may vary considerably within and between populations, and is highly scale dependent. Thereby, home range scale analyses show higher robustness whereas fine-scale resource selection is not easily predictable and not transferable across life stages and regions. Such variation may compromise management decisions when based on data of limited sample size or limited regional coverage. We thus recommend home range scale analyses and sampling designs that cover diverse regional landscapes and ensure robust estimates of habitat suitability to conserve wild animal populations. KW - 3D-acceleration sensor KW - biotelemetry KW - Ciconia ciconia KW - home range selection KW - resource selection Y1 - 2018 U6 - https://doi.org/10.3389/fevo.2018.00079 SN - 2296-701X VL - 6 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Zurell, Damaris A1 - Jeltsch, Florian A1 - Dormann, Carsten F. A1 - Schröder-Esselbach, Boris T1 - Static species distribution models in dynamically changing systems : how good can predictions really be? N2 - SDM performance varied for different range dynamics. Prediction accuracies decreased when abrupt range shifts occurred as species were outpaced by the rate of climate change, and increased again when a new equilibrium situation was realised. When ranges contracted, prediction accuracies increased as the absences were predicted well. Far- dispersing species were faster in tracking climate change, and were predicted more accurately by SDMs than short- dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform similarly. Results are discussed in light of other studies dealing with effects of ecological traits and processes on SDM performance. Perspectives are given on further advancements of SDMs and for possible interfaces with more mechanistic approaches in order to improve predictions under environmental change. Y1 - 2009 UR - http://www3.interscience.wiley.com/journal/117966123/home?CRETRY=1&SRETRY=0 U6 - https://doi.org/10.1111/j.1600-0587.2009.05810.x SN - 0906-7590 ER - TY - JOUR A1 - Zurell, Damaris A1 - Eggers, Ute A1 - Kaatz, Michael A1 - Rotics, Shay A1 - Sapir, Nir A1 - Wikelski, Martin A1 - Nathan, Ran A1 - Jeltsch, Florian T1 - Individual-based modelling of resource competition to predict density-dependent population dynamics: a case study with white storks JF - Oikos N2 - Density regulation influences population dynamics through its effects on demographic rates and consequently constitutes a key mechanism explaining the response of organisms to environmental changes. Yet, it is difficult to establish the exact form of density dependence from empirical data. Here, we developed an individual-based model to explore how resource limitation and behavioural processes determine the spatial structure of white stork Ciconia ciconia populations and regulate reproductive rates. We found that the form of density dependence differed considerably between landscapes with the same overall resource availability and between home range selection strategies, highlighting the importance of fine-scale resource distribution in interaction with behaviour. In accordance with theories of density dependence, breeding output generally decreased with density but this effect was highly variable and strongly affected by optimal foraging strategy, resource detection probability and colonial behaviour. Moreover, our results uncovered an overlooked consequence of density dependence by showing that high early nestling mortality in storks, assumed to be the outcome of harsh weather, may actually result from density dependent effects on food provision. Our findings emphasize that accounting for interactive effects of individual behaviour and local environmental factors is crucial for understanding density-dependent processes within spatially structured populations. Enhanced understanding of the ways animal populations are regulated in general, and how habitat conditions and behaviour may dictate spatial population structure and demographic rates is critically needed for predicting the dynamics of populations, communities and ecosystems under changing environmental conditions. Y1 - 2015 U6 - https://doi.org/10.1111/oik.01294 SN - 0030-1299 SN - 1600-0706 VL - 124 IS - 3 SP - 319 EP - 330 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wiegand, T. A1 - Jeltsch, Florian T1 - Long-term dynamics in arid and semi-arid ecosystems : synthesis of a workshop Y1 - 2000 ER - TY - JOUR A1 - Wiegand, K. A1 - Ward, D. A1 - Thulke, Hans-Hermann A1 - Jeltsch, Florian T1 - From snap-shot information to long-term population dynamics of Acacias by a simulation model Y1 - 2000 ER - TY - JOUR A1 - Wiegand, K. A1 - Schmidt, H. A1 - Jeltsch, Florian A1 - Ward, D. T1 - Linking a spatially-explicit model of acacias to GIS and remotely-sensed data Y1 - 2000 ER - TY - JOUR A1 - Wiegand, K. A1 - Jeltsch, Florian A1 - Ward, D. T1 - Minimum recruitment frequency in plants with episodic recruitment N2 - There is concern about the lack of recruitment of Acacia trees in the Negev desert of Israel. We have developed three models to estimate the frequency of recruitment necessary for long-term population survival (i.e. positive average population growth for 1,000 years and <10% probability of extinction). Two models assume purely episodic recruitment based on the general notion that recruitment in and environments is highly episodic. They differ in that the deterministic model investigates average dynamics while the stochastic model does not. Studies indicating that recruitment episodes in and environments have been overemphasized motivated the development of the third model. This semi-stochastic model simulates a mixture of continuous and episodic recruitment. Model analysis was done analytically for the deterministic model and via running model simulations for the stochastic and semi-stochastic models. The deterministic and stochastic models predict that, on average, 2.2 and 3.7 recruitment events per century, respectively, are necessary to sustain the population. According to the semi-stochastic model, 1.6 large recruitment events per century and an annual probability of 50% that a small recruitment event occurs are needed. A consequence of purely episodic recruitment is that all recruitment episodes produce extremely large numbers of recruits (i.e. at odds with field observations), an evaluation that holds even when considering that rare events must be large. Thus, the semi- stochastic model appears to be the most realistic model. Comparing the prediction of the semi-stochastic model to field observations in the Negev desert shows that the absence of observations of extremely large recruitment events is no reason for concern. However, the almost complete absence of small recruitment events is a serious reason for concern. The lack of recruitment may be due to decreased densities of large mammalian herbivores and might be further exacerbated by possible changes in climate, both in terms of average precipitation and the temporal distribution of rain Y1 - 2004 ER - TY - JOUR A1 - Wiegand, K. A1 - Jeltsch, Florian A1 - Ward, D. T1 - Do spatial effects play a role in the spatial distribution of desert dwelling Acacias? Y1 - 2000 ER - TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wichmann, Matthias A1 - Jeltsch, Florian A1 - Dean, Richard A1 - Moloney, Kirk A. A1 - Wissel, Christian T1 - Does climate change in arid savanna affect the population persistence of raptors? Y1 - 2002 ER - TY - JOUR A1 - Wichmann, Matthias A1 - Jeltsch, Florian A1 - Dean, Richard A1 - Moloney, Kirk A. A1 - Wissel, Christian T1 - Weather does matter : simulating population dynamics of tawny eagle (Aquila rapax) under various rainfall scenarios Y1 - 2002 ER - TY - JOUR A1 - Wichmann, Matthias A1 - Groeneveld, Jürgen A1 - Jeltsch, Florian A1 - Grimm, Volker T1 - Mitigation of climate change impacts on raptors by behavioural adaptation : ecological buffering mechanisms N2 - The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle (Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted. (c) 2004 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0921-8181 ER - TY - JOUR A1 - Wichmann, Matthias A1 - Groeneveld, Jürgen A1 - Jeltsch, Florian A1 - Grimm, Volker T1 - Mitigation of climate change impacts on raptors by behavioural adaption : ecological buffering mechanism Y1 - 2005 ER - TY - JOUR A1 - Wichmann, Matthias A1 - Dean, W. R. J. A1 - Jeltsch, Florian T1 - Predicting the breeding success of large raptors in arid southern Africa : a first assessment N2 - Raptors are often priorities for conservation efforts and breeding success is a target measure for assessing their conservation status. The breeding success of large raptors in and southern Africa is thought to be higher in years of high rainfall. While this correlation has been found in several studies, it has not yet been shown for data from a wider geographical area. In conservation research, it is important to explore the differences between spatially- separated populations to estimate and to compare their conservation status, and to deduce specific management strategies. Using a theoretical approach, we develop a simplistic model to explain the breeding success-rainfall relationship in large African raptors at larger spatial scales. Secondly, we validate this model and we show that the inclusion of field data leads to consistent predictions. In particular, we recommend that the average size of the 'effective territory' should be included in the relationship between annual rainfall and breeding success of raptors in and southern Africa. Accordingly, we suggest that breeding success is a function of precipitation and inter- nest distance. We present a new measure of territory quality depending on rainfall and territory size. We suggest that our model provides a useful first approach to assess breeding success in large raptors of and southern Africa. However, we strongly emphasise the need to gather more data to further verify our model. A general problem in conservation research is to compare the status of populations assessed in different study areas under changing environmental conditions. Our simplistic approach indicates that this problem can be overcome by using a weighted evaluation of a target measure (i.e. breeding success), taking regional differences into account Y1 - 2006 ER - TY - JOUR A1 - Weiß, Lina A1 - Jeltsch, Florian T1 - The response of simulated grassland communities to the cessation of grazing JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Changes in land-use are supposed to be among the severest prospective threats to plant diversity worldwide. In semi-natural temperate grasslands, the cessation of traditional land use like livestock grazing is considered to be one of the most important drivers of the diversity loss witnessed within the last decades. Despite of the enormous number of studies on successional pathways following grazing abandonment there is no general pattern of how grassland communities are affected in terms of diversity, trait composition and pace of succession. To gain a comprehensive picture is difficult given the heterogeneity of environments and the time and effort needed for long-term investigations. We here use a proven individual- and trait-based grassland community model to analyze short- and long-term consequences of grazing abandonment under different assumptions of resource availability, pre-abandonment grazing intensity and regional isolation of communities. Grazing abandonment led to a decrease of plant functional type (PFT) diversity in all but two scenarios in the long-term. In short-term we also found an increase or no change in Shannon diversity for several scenarios. With grazing abandonment we overall found an increase in maximum plant mass, clonal integration and longer lateral spread, a decrease in rosette plant types and in stress tolerant plants, as well as an increase in grazing tolerant and a decrease in grazing avoiding plant types. Observed changes were highly dependent on the regional configuration of communities, prevalent resource conditions and land use intensity before abandonment. While long-term changes took around 10-20 years in resource rich conditions, new equilibria established in resource poor conditions only after 30-40 years. Our results confirm the potential threats caused by recent land-use changes and the assumption that oligotrophic communities are more resistant than mesotrophic communities also for long-term abandonment. Moreover, results revealed that species-rich systems are not per se more resistant than species-poor grasslands. (C) 2015 Elsevier B.V. All rights reserved. KW - Diversity KW - Individual-based model KW - Land use intensity KW - Seed immigration KW - Abandonment KW - Resistance Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolmodel.2015.02.002 SN - 0304-3800 SN - 1872-7026 VL - 303 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weiss, Lina A1 - Schalow, Linda A1 - Jeltsch, Florian A1 - Geissler, Katja T1 - Experimental evidence for root competition effects on community evenness in one of two phytometer species JF - Journal of plant ecology N2 - Aims Plant-plant interactions, being positive or negative, are recognized to be key factors in structuring plant communities. However, it is thought that root competition may be less important than shoot competition due to greater size symmetry belowground. Because direct experimental tests on the importance of root competition are scarce, we aim at elucidating whether root competition may have direct or indirect effects on community structure. Indirect effects may occur by altering the overall size asymmetry of competition through root-shoot competitive interactions. Methods We used a phytometer approach to examine the effects of root, shoot and total competition intensity and importance on evenness of experimental plant communities. Thereby two different phytometer species, Festuca brevipila and Dianthus carthusianorum, were grown in small communities of six grassland species over three levels of light and water availability, interacting with neighbouring shoots, roots, both or not at all. Important Findings We found variation in community evenness to be best explained if root and shoot (but not total) competition were considered. However, the effects were species specific: in Dianthus communities increasing root competition increased plant community evenness, while in Festuca communities shoot competition was the driving force of this evenness response. Competition intensities were influenced by environmental conditions in Dianthus, but not in Festuca phytometer plants. While we found no evidence for root-shoot interactions for neither phytometer species root competition in Dianthus communities led to increased allocation to shoots, thereby increasing the potential ability to perform in size-asymmetric competition for light. Our experiment demonstrates the potential role of root competition in structuring plant communities. KW - plant-plant interactions KW - root and shoot competition KW - intensity vs KW - importance KW - experimental plant communities KW - asymmetry of competition Y1 - 2018 U6 - https://doi.org/10.1093/jpe/rty021 SN - 1752-9921 SN - 1752-993X VL - 12 IS - 2 SP - 281 EP - 291 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Weiss, Lina A1 - Pfestorf, Hans A1 - May, Felix A1 - Körner, Katrin A1 - Boch, Steffen A1 - Fischer, Markus A1 - Müller, Jörg A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Jeltsch, Florian T1 - Grazing response patterns indicate isolation of semi-natural European grasslands JF - Oikos N2 - Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. Y1 - 2014 U6 - https://doi.org/10.1111/j.1600-0706.2013.00957.x SN - 0030-1299 SN - 1600-0706 VL - 123 IS - 5 SP - 599 EP - 612 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Weise, Hanna A1 - Auge, Harald A1 - Baessler, Cornelia A1 - Bärlund, Ilona A1 - Bennett, Elena M. A1 - Berger, Uta A1 - Bohn, Friedrich A1 - Bonn, Aletta A1 - Borchardt, Dietrich A1 - Brand, Fridolin A1 - Jeltsch, Florian A1 - Joshi, Jasmin Radha A1 - Grimm, Volker T1 - Resilience trinity BT - Safeguarding ecosystem functioning and services across three different time horizons and decision contexts T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1444 KW - concepts KW - ecosystems KW - ecosystem services provisioning KW - management KW - resilience Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515284 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Weise, Hanna A1 - Auge, Harald A1 - Baessler, Cornelia A1 - Bärlund, Ilona A1 - Bennett, Elena M. A1 - Berger, Uta A1 - Bohn, Friedrich A1 - Bonn, Aletta A1 - Borchardt, Dietrich A1 - Brand, Fridolin A1 - Jeltsch, Florian A1 - Joshi, Jasmin Radha A1 - Grimm, Volker T1 - Resilience trinity BT - safeguarding ecosystem functioning and services across three different time horizons and decision contexts JF - Oikos N2 - Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority. KW - concepts KW - ecosystems KW - ecosystem services provisioning KW - management KW - resilience Y1 - 2020 U6 - https://doi.org/10.1111/oik.07213 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 4 SP - 445 EP - 456 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Weber, Gisela A1 - Jeltsch, Florian T1 - Long-term impacts of livestock herbivory on herbaceous and woody vegetation in semiarid savannas Y1 - 2000 ER -