TY - GEN A1 - Ceulemans, Ruben A1 - Gaedke, Ursula A1 - Klauschies, Toni A1 - Guill, Christian T1 - The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 744 KW - early-warning signals KW - top-down control KW - community ecology KW - regime shifts KW - food webs KW - compensatory dynamics KW - consumer diversity KW - metabolic theory KW - rapid evolution KW - stable states Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435439 SN - 1866-8372 IS - 744 ER - TY - THES A1 - Braun, Tobias T1 - Recurrences in past climates T1 - Rekurrenzen in vergangenen Klimaperioden BT - novel concepts & tools for the study of Palaeoseasonality and beyond BT - neue Konzepte und Methoden zur Analyse von Paläosaisonalität und darüber hinaus N2 - Our ability to predict the state of a system relies on its tendency to recur to states it has visited before. Recurrence also pervades common intuitions about the systems we are most familiar with: daily routines, social rituals and the return of the seasons are just a few relatable examples. To this end, recurrence plots (RP) provide a systematic framework to quantify the recurrence of states. Despite their conceptual simplicity, they are a versatile tool in the study of observational data. The global climate is a complex system for which an understanding based on observational data is not only of academical relevance, but vital for the predurance of human societies within the planetary boundaries. Contextualizing current global climate change, however, requires observational data far beyond the instrumental period. The palaeoclimate record offers a valuable archive of proxy data but demands methodological approaches that adequately address its complexities. In this regard, the following dissertation aims at devising novel and further developing existing methods in the framework of recurrence analysis (RA). The proposed research questions focus on using RA to capture scale-dependent properties in nonlinear time series and tailoring recurrence quantification analysis (RQA) to characterize seasonal variability in palaeoclimate records (‘Palaeoseasonality’). In the first part of this thesis, we focus on the methodological development of novel approaches in RA. The predictability of nonlinear (palaeo)climate time series is limited by abrupt transitions between regimes that exhibit entirely different dynamical complexity (e.g. crossing of ‘tipping points’). These possibly depend on characteristic time scales. RPs are well-established for detecting transitions and capture scale-dependencies, yet few approaches have combined both aspects. We apply existing concepts from the study of self-similar textures to RPs to detect abrupt transitions, considering the most relevant time scales. This combination of methods further results in the definition of a novel recurrence based nonlinear dependence measure. Quantifying lagged interactions between multiple variables is a common problem, especially in the characterization of high-dimensional complex systems. The proposed ‘recurrence flow’ measure of nonlinear dependence offers an elegant way to characterize such couplings. For spatially extended complex systems, the coupled dynamics of local variables result in the emergence of spatial patterns. These patterns tend to recur in time. Based on this observation, we propose a novel method that entails dynamically distinct regimes of atmospheric circulation based on their recurrent spatial patterns. Bridging the two parts of this dissertation, we next turn to methodological advances of RA for the study of Palaeoseasonality. Observational series of palaeoclimate ‘proxy’ records involve inherent limitations, such as irregular temporal sampling. We reveal biases in the RQA of time series with a non-stationary sampling rate and propose a correction scheme. In the second part of this thesis, we proceed with applications in Palaeoseasonality. A review of common and promising time series analysis methods shows that numerous valuable tools exist, but their sound application requires adaptions to archive-specific limitations and consolidating transdisciplinary knowledge. Next, we study stalagmite proxy records from the Central Pacific as sensitive recorders of mid-Holocene El Niño-Southern Oscillation (ENSO) dynamics. The records’ remarkably high temporal resolution allows to draw links between ENSO and seasonal dynamics, quantified by RA. The final study presented here examines how seasonal predictability could play a role for the stability of agricultural societies. The Classic Maya underwent a period of sociopolitical disintegration that has been linked to drought events. Based on seasonally resolved stable isotope records from Yok Balum cave in Belize, we propose a measure of seasonal predictability. It unveils the potential role declining seasonal predictability could have played in destabilizing agricultural and sociopolitical systems of Classic Maya populations. The methodological approaches and applications presented in this work reveal multiple exciting future research avenues, both for RA and the study of Palaeoseasonality. N2 - Unsere Fähigkeit, den Zustand eines Systems vorherzusagen, hängt grundlegend von der Tendenz des Systems ab, zu früheren Zuständen zurückzukehren. Solche "Rekurrenzen" sind sogar Bestandteil unserer Intuition und alltäglichen Erfahrungswelt: regelmäßige Routinen, soziale Zusammentreffen and die Wiederkehr der Jahreszeiten sind hierfür nur vereinzelte Beispiele. Rekurrenzplots (RPs) stellen uns in diesem Kontext eine systematische Methode zur Verfügung, um die Wiederkehreigenschaften von Systemzuständen quantitativ zu untersuchen. Obwohl RPs konzeptionell vergleichsweise simpel sind, stellen sie eine vielseitige Methode zur Analyse von gemessenen Beobachtungsdaten dar. Das globale Klimasystem ist ein komplexes System, bei dem ein datenbasiertes Verständnis nicht lediglich von rein akademischen Wert ist – es ist viel mehr relevant für das Fortbestehen der Gesellschaft innerhalb der natürlichen planetaren Grenzen. Um die heute beobachteten Klimaveränderungen allerdings in einen langfristigen Kontext einzuordnen, benötigen wir empirische Daten, die weit über die Periode hinaus gehen, für die instrumentelle Daten verfügbar sind. Paläoklimatologische Datenreihen repräsentieren hier ein wertvolles Archiv, dessen Auswertung jedoch Analysemethoden erfordert, die an die Komplexitäten von paläoklimatologischen ‘Proxydaten’ angepasst sind. Um einen wissenschaftlichen Beitrag zu dieser Problemstellung zu leisten, befasst sich diese Doktorarbeit mit der Konzeptionierung neuer Methoden und der problemstellungsbezogenen Anpassung bewährter Methoden in der Rekurrenzanalyse (RA). Die hier formulierten zentralen Forschungsfragen konzentrieren sich auf den Nachweis zeitskalen-abhängiger Eigenschaften in nichtlinearen Zeitreihen und, insbesondere, der Anpassung von quantitativen Maßen in der RA, um paläosaisonale Proxydaten zu charakterisieren (‘Paläosaisonalität’). Im ersten Teil dieser Arbeit liegt der Schwerpunkt auf der Entwicklung neuer methodischer Ansätze in der RA. Die Vorhersagbarkeit nichtlinearer (paläo)klimatologischer Zeitreihen ist durch abrupte Übergänge zwischen dynamisch grundlegend verschiedenen Zuständen erschwert (so zum Beispiel das Übertreten sogenannter ‘Kipppunkte’). Solche Zustandsübergänge zeigen oft charakteristische Zeitskalen-Abhängigkeiten. RPs haben sich als Methode zum Nachweis von Zustandsübergängen bewährt und sind darüber hinaus geeignet, Skalenabhängigkeiten zu identifizieren. Dennoch wurden beide Aspekte bislang selten methodisch zusammengeführt. Wir kombinieren hier bestehende Konzepte aus der Analyse selbstähnlicher Strukturen und RPs, um abrupte Zustandsübergänge unter Einbezug der relevantesten Zeitskalen zu identifizieren. Diese Kombination von Konzepten führt uns ferner dazu, ein neues rekurrenzbasiertes, nichtlineares Abhängigkeitsmaß einzuführen. Die quantitative Untersuchung zeitversetzter Abhängigkeiten zwischen zahlreichen Variablen ist ein zentrales Problem, das insbesondere in der Analyse hochdimensionaler komplexer Systeme auftritt. Das hier definierte ‘Rekurrenzfluß’-Abhängigkeitsmaß ermöglicht es auf elegante Weise, derartige Abhängigkeiten zu charakterisieren. Bei räumlich ausgedehnten komplexen Systemen führen Interaktionen zwischen lokalen Variablen zu der Entstehung räumlicher Muster. Diese räumlichen Muster zeigen zeitliche Rekurrenzen. In einer auf dieser Beobachtung aufbauenden Publikation stellen wir eine neue Methode vor, mit deren Hilfe differenzierbare, makroskopische Zustände untersucht werden können, die zu zentralen, zeitlich wiederkehrenden räumlichen Mustern korrespondieren. Folgend leiten wir über zum zweiten Teil dieser Arbeit, indem wir uns Anpassungen von Methoden zur Untersuchung von Paläosaisonalität zuwenden. Messreihen paläoklimatologischer Proxydaten geben uns nur indirekt Informationen über die ihnen zugrunde liegenden Klimavariablen und weisen inhärente Limitationen auf, wie zum Beispiel unregelmäßige Zeitabstände zwischen Datenpunkten. Wir zeigen statistische Verzerrungseffekte auf, die in der quantitativen RA auftreten, wenn Signale mit nichtstationärer Abtastrate untersucht werden. Eine Methode zur Korrektur wird vorgestellt und anhand von Messdaten validiert. Der zweite Teil dieser Dissertation befasst sich mit angewandten Analysen von paläosaisonalen Zeitreihen. Eine Literaturauswertung verbreiteter und potentiell vielversprechender Zeitreihenanalysemethoden zeigt auf, dass es eine Vielzahl solcher Methoden gibt, deren adäquate Anwendung aber Anpassungen an Klimaarchiv-spezifische Grenzen und Probleme sowie eine Zusammenführung interdisziplinärer Fähigkeiten erfordert. Daraufhin untersuchen wir an einem Stalagmiten gemessene Proxydaten aus der zentralen Pazifikregion als ein natürliches Archiv für potentielle Veränderungen der El Niño-Southern Oscillation (ENSO) währen des mittleren Holozäns. Die bemerkenswert hohe zeitliche Auflösung der Proxy-Zeitreihen erlaubt es uns, Verbindungen zwischen der Ausprägung der ENSO und saisonalen Zyklen herzustellen, wobei wir erneut Gebrauch von der RA machen. Die letzte Publikation in dieser Arbeit untersucht, in wie fern die Vorhersagbarkeit saisonaler Veränderungen eine Rolle für die Stabilität von Gesellschaften spielen könnte, deren Nahrungsversorgung auf Landwirtschaft beruht. Die klassische Maya-Zivilisation erlitt zwischen 750-950 CE eine drastische Fragmentierung urbaner Zentren, die mit regionalen Dürren in Verbindung gebracht werden. Auf Grundlage von saisonal-aufgelösten Proxydaten aus der Yok Balum Höhle in Belize, definieren wir ein quantitatives Maß für saisonale Vorhersagbarkeit. Dies erlaubt Schlussfolgerungen über die potentielle Rolle, die ein Verlust saisonaler Vorhersagbarkeit für die sich destablisierenden agrarwirtschaftlichen und soziopolitischen Systeme der Maya gehabt haben könnte. Die methodischen Ansätze und Anwendungen in dieser Arbeit zeigen vielseitige, spannende Forschungsfragen für zukünftige Untersuchungen in der RA und Paläosaisonalität auf. KW - recurrence analysis KW - palaeoclimate KW - seasonality KW - nonlinear time series analysis KW - self-similarity KW - regime shifts KW - climate impact research KW - Klimafolgenforschung KW - nichtlineare Zeitreihenanalyse KW - Paläoklima KW - Rekurrenzanalyse KW - abrupte Übergänge KW - Selbstähnlichkeit Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586900 ER -