TY - THES A1 - Weise, Matthias T1 - Auswahl von Selektions- und Manipulationstechniken für Virtual Reality-Anwendungen T1 - Choosing selection and manipulation techniques for Virtual Reality applications N2 - Die stetige Weiterentwicklung von VR-Systemen bietet neue Möglichkeiten der Interaktion mit virtuellen Objekten im dreidimensionalen Raum, stellt Entwickelnde von VRAnwendungen aber auch vor neue Herausforderungen. Selektions- und Manipulationstechniken müssen unter Berücksichtigung des Anwendungsszenarios, der Zielgruppe und der zur Verfügung stehenden Ein- und Ausgabegeräte ausgewählt werden. Diese Arbeit leistet einen Beitrag dazu, die Auswahl von passenden Interaktionstechniken zu unterstützen. Hierfür wurde eine repräsentative Menge von Selektions- und Manipulationstechniken untersucht und, unter Berücksichtigung existierender Klassifikationssysteme, eine Taxonomie entwickelt, die die Analyse der Techniken hinsichtlich interaktionsrelevanter Eigenschaften ermöglicht. Auf Basis dieser Taxonomie wurden Techniken ausgewählt, die in einer explorativen Studie verglichen wurden, um Rückschlüsse auf die Dimensionen der Taxonomie zu ziehen und neue Indizien für Vor- und Nachteile der Techniken in spezifischen Anwendungsszenarien zu generieren. Die Ergebnisse der Arbeit münden in eine Webanwendung, die Entwickelnde von VR-Anwendungen gezielt dabei unterstützt, passende Selektions- und Manipulationstechniken für ein Anwendungsszenario auszuwählen, indem Techniken auf Basis der Taxonomie gefiltert und unter Verwendung der Resultate aus der Studie sortiert werden können. N2 - The constant advancement of VR systems offers new possibilities of interaction with virtual objects in three-dimensional space, but also poses new challenges for developers of VR applications. Selection and manipulation techniques have to be chosen in dependence of the application scenario, the users and the available input and output devices. This work contributes to support the selection of suitable interaction techniques. A representative quantity of selection and manipulation techniques has been investigated and a taxonomy has been developed based on existing classification systems which allows the analysis of the techniques with respect to properties relevant for interaction. Based on this taxonomy, techniques were selected and compared in an exploratory study in order to draw conclusions about the dimensions of the taxonomy and to generate new evidence for advantages and disadvantages of the techniques in specific application scenarios. The results of the work lead to a web application, which supports the developer of VR applications in choosing suitable selection and manipulation techniques for an application scenario by filtering techniques based on the taxonomy and sorting them using the results of the study. KW - Virtual Reality KW - Interaktionstechniken KW - Mensch-Computer-Interaktion KW - Virtual Reality KW - interaction techniques KW - human computer interaction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-534586 ER - TY - THES A1 - Discher, Sören T1 - Real-Time Rendering Techniques for Massive 3D Point Clouds T1 - Echtzeit-Rendering-Techniken für massive 3D-Punktwolken N2 - Today, point clouds are among the most important categories of spatial data, as they constitute digital 3D models of the as-is reality that can be created at unprecedented speed and precision. However, their unique properties, i.e., lack of structure, order, or connectivity information, necessitate specialized data structures and algorithms to leverage their full precision. In particular, this holds true for the interactive visualization of point clouds, which requires to balance hardware limitations regarding GPU memory and bandwidth against a naturally high susceptibility to visual artifacts. This thesis focuses on concepts, techniques, and implementations of robust, scalable, and portable 3D visualization systems for massive point clouds. To that end, a number of rendering, visualization, and interaction techniques are introduced, that extend several basic strategies to decouple rendering efforts and data management: First, a novel visualization technique that facilitates context-aware filtering, highlighting, and interaction within point cloud depictions. Second, hardware-specific optimization techniques that improve rendering performance and image quality in an increasingly diversified hardware landscape. Third, natural and artificial locomotion techniques for nausea-free exploration in the context of state-of-the-art virtual reality devices. Fourth, a framework for web-based rendering that enables collaborative exploration of point clouds across device ecosystems and facilitates the integration into established workflows and software systems. In cooperation with partners from industry and academia, the practicability and robustness of the presented techniques are showcased via several case studies using representative application scenarios and point cloud data sets. In summary, the work shows that the interactive visualization of point clouds can be implemented by a multi-tier software architecture with a number of domain-independent, generic system components that rely on optimization strategies specific to large point clouds. It demonstrates the feasibility of interactive, scalable point cloud visualization as a key component for distributed IT solutions that operate with spatial digital twins, providing arguments in favor of using point clouds as a universal type of spatial base data usable directly for visualization purposes. N2 - Punktwolken gehören heute zu den wichtigsten Kategorien räumlicher Daten, da sie digitale 3D-Modelle der Ist-Realität darstellen, die mit beispielloser Geschwindigkeit und Präzision erstellt werden können. Ihre einzigartigen Eigenschaften, d.h. das Fehlen von Struktur-, Ordnungs- oder Konnektivitätsinformationen, erfordern jedoch spezielle Datenstrukturen und Algorithmen, um ihre volle Präzision zu nutzen. Insbesondere gilt dies für die interaktive Visualisierung von Punktwolken, die es erfordert, Hardwarebeschränkungen in Bezug auf GPU-Speicher und -Bandbreite mit einer naturgemäß hohen Anfälligkeit für visuelle Artefakte in Einklang zu bringen. Diese Arbeit konzentriert sich auf Konzepte, Techniken und Implementierungen von robusten, skalierbaren und portablen 3D-Visualisierungssystemen für massive Punktwolken. Zu diesem Zweck wird eine Reihe von Rendering-, Visualisierungs- und Interaktionstechniken vorgestellt, die mehrere grundlegende Strategien zur Entkopplung von Rendering-Aufwand und Datenmanagement erweitern: Erstens eine neuartige Visualisierungstechnik, die kontextabhängiges Filtern, Hervorheben und Interaktion innerhalb von Punktwolkendarstellungen erleichtert. Zweitens hardwarespezifische Optimierungstechniken, welche die Rendering-Leistung und die Bildqualität in einer immer vielfältigeren Hardware-Landschaft verbessern. Drittens natürliche und künstliche Fortbewegungstechniken für eine übelkeitsfreie Erkundung im Kontext moderner Virtual-Reality-Geräte. Viertens ein Framework für webbasiertes Rendering, das die kollaborative Erkundung von Punktwolken über Geräteökosysteme hinweg ermöglicht und die Integration in etablierte Workflows und Softwaresysteme erleichtert. In Zusammenarbeit mit Partnern aus Industrie und Wissenschaft wird die Praxistauglichkeit und Robustheit der vorgestellten Techniken anhand mehrerer Fallstudien aufgezeigt, die repräsentative Anwendungsszenarien und Punktwolkendatensätze verwenden. Zusammenfassend zeigt die Arbeit, dass die interaktive Visualisierung von Punktwolken durch eine mehrstufige Softwarearchitektur mit einer Reihe von domänenunabhängigen, generischen Systemkomponenten realisiert werden kann, die auf Optimierungsstrategien beruhen, die speziell für große Punktwolken geeignet sind. Sie demonstriert die Machbarkeit einer interaktiven, skalierbaren Punktwolkenvisualisierung als Schlüsselkomponente für verteilte IT-Lösungen, die mit räumlichen digitalen Zwillingen arbeiten, und liefert Argumente für die Verwendung von Punktwolken als universelle Art von räumlichen Basisdaten, die direkt für Visualisierungszwecke verwendet werden können. KW - 3D Point Clouds KW - Real-Time Rendering KW - Visualization KW - Virtual Reality KW - Web-Based Rendering KW - 3D-Punktwolken KW - Echtzeit-Rendering KW - Visualisierung KW - Virtuelle Realität KW - Webbasiertes Rendering Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601641 ER - TY - THES A1 - Dannenmann, Barbara T1 - Können technologiegestützte Verhandlungstrainings unter Einsatz von Künstlicher Intelligenz und Virtueller Realität das Vertriebstraining verbessern? T1 - Can technology-based negotiation trainings using artificial intelligence and virtual reality improve sales trainings? BT - Entwicklung und Evaluation eines automatisierten Verhandlungstrainings BT - development and evaluation of an automated negotiation training N2 - Digitale und gesellschaftliche Entwicklungen fordern kontinuierliche Weiterbildung für Mitarbeiter im Vertrieb. Es halten sich in dieser Berufssparte aber immer noch einige Mythen zum Training von Vertriebsmitarbeitern. Unter anderem deshalb wurde in der Vergangenheit der Trainingsbedarf im Vertrieb stark vernachlässigt. Die Arbeit befasst sich deshalb zunächst mit der Frage, wie der Vertrieb in Deutschland aktuell geschult wird (unter Einbezug der Corona-Pandemie) und ob sich aus den Trainingsgewohnheiten erste Hinweise zur Erlangung eines strategischen Wettbewerbsvorteils ergeben könnten. Dabei greift die Arbeit auf, dass Investitionen in das Training von Vertriebsmitarbeitern eine Anlage in die Wettbewerbsfähigkeit des Unternehmens sein könnten. Automatisierte Trainings, beispielsweise basierend auf Virtual Reality (VR) und Künstlicher Intelligenz (KI), könnten in der Aus- und Weiterbildung des Vertriebs einen effizienten Beitrag in der Sicherstellung eines strategischen Wettbewerbsvorteils leisten. Durch weitere Forschungsfragen befasst sich die Arbeit anschließend damit, wie ein automatisiertes Vertriebstraining mit KI- und VR-Inhalten unter Einbeziehung der Nutzer gestaltet werden muss, um Vertriebsmitarbeiter in einem dafür ausgewählten Verhandlungskontext zu trainieren. Dazu wird eine Anwendung mit Hilfe von Virtual Reality und Künstlicher Intelligenz in einem Verhandlungsdialog entwickelt, getestet und evaluiert. Die vorliegende Arbeit liefert eine Basis für die Automatisierung von Vertriebstrainings und im erweiterten Sinne für Trainings im Allgemeinen. N2 - Digital and social developments demand continuous training for sales staff. However, some myths about the training of sales staff still persist in this profession. This is one of the reasons why the need for training in sales has been strongly neglected in the past. This work therefore first deals with the question of how salespeople in Germany are currently trained (taking into account the Corona pandemic) and whether initial indications for gaining a strategic competitive advantage could result from training habits. It takes up the idea that investments in the training of sales staff could be an investment in the competitiveness of the company. Automated training, for example based on virtual reality (VR) and artificial intelligence (AI), could make an efficient contribution to ensuring a strategic competitive advantage in sales training. Through further research questions, the thesis then addresses how automated sales training with AI and VR content must be designed with user involvement in order to train sales employees in a negotiation context selected for this purpose. For this purpose, an application is developed, tested and evaluated using virtual reality and artificial intelligence in a negotiation dialogue. This work provides a basis for the automation of sales training and, in a broader sense, for training in general. KW - VR KW - KI KW - Vertrieb KW - Verhandlungen KW - Artificial Intelligence KW - Virtual Reality KW - negotiations KW - sales Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577378 ER - TY - THES A1 - Cheng, Lung-Pan T1 - Human actuation T1 - Menschlicher Aktuator N2 - Ever since the conception of the virtual reality headset in 1968, many researchers have argued that the next step in virtual reality is to allow users to not only see and hear, but also feel virtual worlds. One approach is to use mechanical equipment to provide haptic feedback, e.g., robotic arms, exoskeletons and motion platforms. However, the size and the weight of such mechanical equipment tends to be proportional to its target’s size and weight, i.e., providing human-scale haptic feedback requires human-scale equipment, often restricting them to arcades and lab environments. The key idea behind this dissertation is to bypass mechanical equipment by instead leveraging human muscle power. We thus create software systems that orchestrate humans in doing such mechanical labor—this is what we call human actuation. A potential benefit of such systems is that humans are more generic, flexible, and versatile than machines. This brings a wide range of haptic feedback to modern virtual reality systems. We start with a proof-of-concept system—Haptic Turk, focusing on delivering motion experiences just like a motion platform. All Haptic Turk setups consist of a user who is supported by one or more human actuators. The user enjoys an interactive motion simulation such as a hang glider experience, but the motion is generated by those human actuators who manually lift, tilt, and push the user’s limbs or torso. To get the timing and force right, timed motion instructions in a format familiar from rhythm games are generated by the system. Next, we extend the concept of human actuation from 3-DoF to 6-DoF virtual reality where users have the freedom to walk around. TurkDeck tackles this problem by orchestrating a group of human actuators to reconfigure a set of passive props on the fly while the user is progressing in the virtual environment. TurkDeck schedules human actuators by their distances from the user, and instructs them to reconfigure the props to the right place on the right time using laser projection and voice output. Our studies in Haptic Turk and TurkDeck showed that human actuators enjoyed the experience but not as much as users. To eliminate the need of dedicated human actuators, Mutual Turk makes everyone a user by exchanging mechanical actuation between two or more users. Mutual Turk’s main functionality is that it orchestrates the users so as to actuate props at just the right moment and with just the right force to produce the correct feedback in each other's experience. Finally, we further eliminate the need of another user, making human actuation applicable to single-user experiences. iTurk makes the user constantly reconfigure and animate otherwise passive props. This allows iTurk to provide virtual worlds with constantly varying or even animated haptic effects, even though the only animate entity present in the system is the user. Our demo experience features one example each of iTurk’s two main types of props, i.e., reconfigurable props (the foldable board from TurkDeck) and animated props (the pendulum). We conclude this dissertation by summarizing the findings of our explorations and pointing out future directions. We discuss the development of human actuation compare to traditional machine actuation, the possibility of combining human and machine actuators and interaction models that involve more human actuators. N2 - Seit der Konzeption des Virtual-Reality-Headsets im Jahr 1968 argumentieren Forscher, der nächste Schritt in der virtuellen Realität ist nicht nur zu sehen und zu hören, sondern in virtuelle Welten auch fühlen zu können. Ein Ansatz solch haptisches Feedback zu geben ist die Verwendung mechanischer Ausrüstung, etwa Roboterarme, Exoskelette und Bewegungsplattformen. Jedoch sind die Größe und das Gewicht solcher Ausrüstung proportional zur Größe und Gewicht der Person, d. h. haptisches Feedback für einen Menschen erfordert Ausrüstung mit Größe und Gewicht eines Menschen. Dieses Ausmaß an Gerätschaften ist oft limitiert auf Arkaden oder Laborumgebungen. Der Schlüsselgedanke dieser Dissertation besteht darin, mechanische Geräte zu umgehen und stattdessen menschliche Muskelkraft zu nutzen. Wir erstellen Softwaresystem, die Menschen bei mechanischen Arbeiten orchestrieren, um anderen Menschen haptisches Feedback zu geben. Dies nennen wir „Human Actuation“ – menschliche Aktuierung. Ein möglicher Vorteil solcher Systeme ist es, dass Menschen generischer, flexibler und vielseitiger sind als gängige mechanische Ausrüstung. Dies bringt eine neue Bandbreite von haptischen Feedbackmöglichkeiten in moderne Virtual-Reality-Systeme. Wir beginnen mit einem Proof-of-Concept-System– Haptic Turk, mit Schwerpunkt auf die Bewegungserlebnisse, die eine solche menschliche Bewegungsplattform liefert. Alle Haptic Turk Konfigurationen bestehen aus einem Nutzer, sowie einem oder mehreren Menschen, die den Nutzer unterstützen, den Aktuatoren. Der Nutzer genießt eine interaktive Bewegungssimulation wie zum Beispiel die Simulation eines Hängegleiters, jedoch wird die Bewegung von Menschen erzeugt, die die Gliedmaßen des Benutzers manuell heben, kippen und drücken. Um das Timing einzuhalten, folgen Sie den Anweisungen des Systems. Ein aus Rhythmusspielen bekanntes Format wird dabei dynamisch von dem System erzeugt. Als nächstes erweitern wir das Konzept von „Human Actuation“ um 3-DoF auf 6-DoF Virtual Reality. Das heißt, Nutzer haben nun die Freiheit in der virtuellen Welt umherzugehen. TurkDeck löst dieses Problem, indem es eine Gruppe menschlicher Aktuatoren orchestriert, die eine Reihe von Requisiten rekonfigurieren, die der Nutzer fühlen kann, während er sich in der virtuellen Umgebung fortbewegt. TurkDeck plant die Positionierung der Menschen und weist sie zur richtigen Zeit an, die Requisiten an den richtigen Ort zu stellen. TurkDeck erreicht dies mit Hilfe von Laserprojektion und einer Anweisung gebender synthetischen Stimme. Unsere Studien zu Haptic Turk und TurkDeck zeigen, dass menschliche Aktuatoren ihre Erfahrung zwar genießen, jedoch in dem Ausmaß wie der Nutzer selbst. Um menschliche Aktuatoren mehr einzubeziehen macht Mutual Turk aus jedem Aktuator einen Nutzer, d.h. mehrere Nutzer geben sich gegenseitig haptisches Feedback. Die Hauptfunktion von Mutual Turk besteht darin, dass es seine Nutzer so orchestriert, dass sie die richtigen Requisiten im richtigen Moment und im richtigen Ausmaß betätigen, um so das richtige Feedback in der Erfahrung des Anderen zu erzeugen. Schlussendlich eliminieren wir die Notwendigkeit anderer Nutzer gänzlich und ermöglichen Erfahrungen für Einzelnutzer. iTurk lässt seinen Nutzer passive Requisiten neu konfigurieren und animieren. Dadurch kann iTurk virtuelle Welten mit stetig wechselnden Möglichkeiten bereitstellen oder sogar haptische Effekte generieren, obwohl jede Bewegung im System vom Nutzer selbst ausgelöst wird. Unsere Demo-Applikation verfügt über je ein Beispiel der von iTurk ermöglichten zwei Haupttypen von Requisiten - rekonfigurierbare Requisiten (eine faltbare Tafel aus TurkDeck) und animierter Requisiten (ein Pendel). Wir schließen die Dissertation mit Verweisen auf mögliche Forschungsrichtungen ab, die sich durch die präsentierten Systeme ergeben. Wir diskutieren „Human Actuation“ sowohl im Vergleich zu herkömmlichen mechanischen Geräten, aber auch in der Kombination, da sich mechanische Geräte und Menschen gegenseitig ergänzen können. Zudem erkunden wir mögliche Interaktionsmodelle, die sich durch das Einbeziehen von menschlichen Aktuatoren ergeben. KW - haptic feedback KW - Virtual Reality KW - motion and force KW - props KW - haptisches Feedback KW - virtuelle Realität KW - Bewegung KW - Requisit Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418371 ER -