TY - THES A1 - Schröder, Sarah T1 - Modelling surface evolution coupled with tectonics T1 - Modellierung von Oberflächenprozessen gekoppelt mit Tektonik BT - A case study for the Pamir BT - Eine Fallstudie zum Pamir N2 - This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west. N2 - Im Rahmen dieser Studie werden 1D und 2D Erosionsmodelle im Gebirgsmaßstab implementiert und mit Modellen für tektonische Deformation gekoppelt. Die Kopplungsmethode erlaubt unterschiedlich räumliche und zeitliche Auflösungen im tektonischen und im Erosionsmodell. Es werden sowohl vertikale als auch horizontale Bewegungen zwischen den Modellen transferiert. Darüber hinaus enthält die Kopplungsmethode ein Glättungsverfahren, um eventuelle Instabilitäten des tektonischen Modelles zu kompensieren. Beide Erosionsmodelle beziehen Hangerosion, Flusseinschneidung und Sedimentation ein. Der 1D Code nutzt Hack's Law, um die Wassermengen zu berechnen. Er garantiert Massenerhaltung, indem er Sedimente in Senken speichert. Das 2D Erosionsmodell DANSER basiert auf einem zellulären Automaten. Ein zusätzlicher steigungsabhängiger Faktor erweitert lineare zu nichtlinearer Diffusion. Wassermengen werden mit Hilfe des D8-Algorithmus und einer veränderten Form von O'Callaghans (1984) Algorithmus akkumuliert. Laterale Einschneidung, berechnet durch einen neuen Verteilungs-Algorithmus, verbessert die Modellierung von Flusssystemen. Flüsse sind dabei repräsentiert durch eine unterschiedliche Anzahl an Zellen orthogonal zur Fließrichtung. Ihre Breite wird nach empirischen Gesetzen ermittelt. Die präsentierten Anwendungen dienen der Studie des Pamirgebirges. Zunächst werden die Modellparameter anhand von Einschneidungs- und Erosionsraten sowie Sedimentdurchflüssen kalibriert. Ein digitales Höhenmodell dient als Anfangstopographie und zur Extraktion von Flussprofilen. Laterale Einschneidung zeigt eine deutliche Verbesserung zu bisher vorhandenen Modellen. Sie ermöglicht die Erhaltung der Flussbreite und zeigt hohe Einschneidungsraten in engen Flusspassagen. Modelle von Flussanzapfungen in einem System paralleler Verwerfungen bestätigen die Wichtigkeit von lateraler Einschneidung für Flussanzapfungsmodelle, die Hangerosion einbeziehen. Während die Modelle eine geringe Wahrscheinlichkeit von Flussanzapfungen mit hohem Ablenkungswinkel zeigen, belegen sie auch, dass deren (allgemeine) Wahrscheinlichkeit direkt von der Hebungsrate der Verwerfungen abhängt. Die Erodibilität beschleunigt lediglich die Geschwindigkeit von Flussanzapfungen. Ein Modell, das die Codes SLIM 3D und DANSER koppelt, dokumentiert die vielseitige Verwendbarkeit des neuen Codes: Es zeigt einen geringen Einfluss von Oberflächenprozessen auf die Lithosphärendeformation, während die Sedimentationsroutine erheblich auf spröde Oberflächendeformationen einwirkt. Das Modell legt nahe, dass Sedimentation ein zwischen zwei entstehenden Gebirgen gelegenes Becken weitet. Außerdem weitet sich der südlich von der interkontinentalen Kollisionszone gelegene Teil des Gebirge-Models ebenfalls durch Sedimentation. KW - erosion KW - coupling KW - SEC KW - surface evolution KW - thermo-mechanics KW - surface processes KW - DANSER KW - Pamir KW - Tien-Shan KW - Tian-Shan KW - tectonics KW - modelling KW - modeling KW - numerical model KW - simulation KW - surface KW - fluvial incision KW - hillslope diffusion KW - finite differences KW - finite elements KW - Eulerian grid KW - DANSER KW - DANSER KW - Erosion KW - Modellierung KW - Tektonik KW - Koppelung KW - SEC KW - numerische Modellierung KW - Oberflächenprozesse KW - Pamir KW - Tien-Shan KW - Tian-Shan KW - Tiefendeformation KW - Software KW - Simulation KW - Oberfläche KW - fluviale Einschneidung KW - Hangerosion KW - finite Differenzen KW - finite Elemente KW - Eulerische Gitter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90385 ER - TY - THES A1 - Kieling, Katrin T1 - Quantification of ground motions by broadband simulations T1 - Quantifizierung von Bodenbewegung durch Breitband-Simulationen N2 - In many procedures of seismic risk mitigation, ground motion simulations are needed to test systems or improve their effectiveness. For example they may be used to estimate the level of ground shaking caused by future earthquakes. Good physical models for ground motion simulation are also thought to be important for hazard assessment, as they could close gaps in the existing datasets. Since the observed ground motion in nature shows a certain variability, part of which cannot be explained by macroscopic parameters such as magnitude or position of an earthquake, it would be desirable that a good physical model is not only able to produce one single seismogram, but also to reveal this natural variability. In this thesis, I develop a method to model realistic ground motions in a way that is computationally simple to handle, permitting multiple scenario simulations. I focus on two aspects of ground motion modelling. First, I use deterministic wave propagation for the whole frequency range – from static deformation to approximately 10 Hz – but account for source variability by implementing self-similar slip distributions and rough fault interfaces. Second, I scale the source spectrum so that the modelled waveforms represent the correct radiated seismic energy. With this scaling I verify whether the energy magnitude is suitable as an explanatory variable, which characterises the amount of energy radiated at high frequencies – the advantage of the energy magnitude being that it can be deduced from observations, even in real-time. Applications of the developed method for the 2008 Wenchuan (China) earthquake, the 2003 Tokachi-Oki (Japan) earthquake and the 1994 Northridge (California, USA) earthquake show that the fine source discretisations combined with the small scale source variability ensure that high frequencies are satisfactorily introduced, justifying the deterministic wave propagation approach even at high frequencies. I demonstrate that the energy magnitude can be used to calibrate the high-frequency content in ground motion simulations. Because deterministic wave propagation is applied to the whole frequency range, the simulation method permits the quantification of the variability in ground motion due to parametric uncertainties in the source description. A large number of scenario simulations for an M=6 earthquake show that the roughness of the source as well as the distribution of fault dislocations have a minor effect on the simulated variability by diminishing directivity effects, while hypocenter location and rupture velocity more strongly influence the variability. The uncertainty in energy magnitude, however, leads to the largest differences of ground motion amplitude between different events, resulting in a variability which is larger than the one observed. For the presented approach, this dissertation shows (i) the verification of the computational correctness of the code, (ii) the ability to reproduce observed ground motions and (iii) the validation of the simulated ground motion variability. Those three steps are essential to evaluate the suitability of the method for means of seismic risk mitigation. N2 - In vielen Verfahren zur Minimierung seismischen Risikos braucht man Seismogramme, um die Effektivität von Systemen zu testen oder diese zu verbessern. So können realistische Bodenbewegungen genutzt werden, um das Ausmaß der Erschütterungen durch zukünftige Erdbeben abzuschätzen. Gute physikalische Bodenbewegungsmodelle haben auch das Potential, Lücken in den beobachteten Datensätzen zu schließen und somit Gefährdungsabschätzungen zu verbessern. Da die in der Natur beobachtete Bodenbewegung einer gewissen Variabilität unterliegt, von der ein Teil nicht durch makroskopische Parameter wie Magnitude oder Position des Erdbebens erklärt werden kann, ist es wünschenswert, dass ein gutes physikalisches Modell nicht nur ein einzelnes Seismogramm produziert, sondern auch die natürliche Variabilität widerspiegelt. In dieser Arbeit beschreibe ich eine Methode zur Modellierung von realistischen Bodenbewegungen, die – aufgrund ihrer einfachen Modellkonfiguration – mehrere Szenario-Simulationen ermöglicht. Dabei konzentriere ich mich auf zwei Aspekte: Einerseits nutze ich ein deterministisches Verfahren für die Wellenausbreitung für den gesamten Frequenzbereich, von der statischen Deformation bis etwa 10 Hz, unter Berücksichtigung der Variabilität der Quelle durch die Einbeziehung von selbstähnlichen Slipverteilungen und rauen Störungsflächen. Andererseits skaliere ich das Quellspektrum so, dass die modellierte Wellenform die abgestrahlte seismische Ener-gie wiedergibt. Damit überprüfe ich, ob die Energie-Magnitude als Stellgröße geeignet ist, die den Anteil der Energie beschreibt, der im Hochfrequenzbereich abgestrahlt wird. Der Vorteil der Energie- Magnitude ist, dass diese aus Beobachtungen, sogar in sehr kurzer Zeit, ermittelt werden kann. Anwendungen der entwickelten Methode für das Wenchuan (China) Erdbeben von 2008, das Tokachi-Oki (Japan) Erdbeben von 2003 und das Northridge (Kalifornien, USA) Erdbeben von 1994 demonstrieren, dass durch eine feine Diskretisierung und kleinskalige Variabilität in der Quelle hohe Frequenzen ausreichend in die Wellenform eingeführt werden, was den deterministischen Ansatz auch im Hochfrequenzbereich bestätigt. Ich zeige, dass die Energie-Magnitude verwendet werden kann um den Hochfrequenzanteil in Bodenbewegungssimulationen zu kalibrieren. Da die determistische Wellenausbreitung auf den gesamten Frequenzbereich angewandt wird, können die Variabilitäten, die durch parametrische Unsicherheiten in der Quellbeschreibung entstehen, beziffert werden. Zahlreiche Simulationen für ein M=6 Beben zeigen, dass die Rauigkeit der Quelle und die Slipverteilung durch Minderung der Direktivitätseffekte die simulierte Variabilität der Bodenbewegung geringfügig verringern. Dagegen haben die Bruchgeschwindigkeit und die Lage des Hypozentrums einen stärkeren Einfluss auf die Variabilität. Die Unsicherheit in der Energie-Magnitude dagegen führt zu großen Unterschieden zwischen verschiedenen Erdbebensimulationen, welche größer sind als die beobachtete Variabilität von Bodenbewegungen. In Bezug auf die vorgestellte Methode zeigt diese Arbeit (i) den Nachweis der Richtigkeit des Computerprogramms, (ii) die Eignung zur Modellierung beobachteter Bodenbewegung und (iii) den Vergleich der simulierten Variabilität von Bodenbewegung mit der beobachteten. Dies sind die ersten drei Schritte auf dem Weg zur Nutzbarkeit von Bodenbewegungssimulationen in Maßnahmen zur Verminderung des seismischen Risikos. KW - ground motions KW - earthquake KW - simulation KW - seismic risk KW - ground motion variability KW - Bodenbewegung KW - Erdbeben KW - seismisches Risiko KW - Simulation KW - Variabilität von Bodenbewegung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85989 ER -