TY - GEN A1 - Frindte, Katharina A1 - Allgaier, Martin A1 - Grossart, Hans-Peter A1 - Eckert, Werner T1 - Microbial response to experimentally controlled redox transitions at the sediment water interface T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The sediment-water interface of freshwater lakes is characterized by sharp chemical gradients, shaped by the interplay between physical, chemical and microbial processes. As dissolved oxygen is depleted in the uppermost sediment, the availability of alternative electron acceptors, e.g. nitrate and sulfate, becomes the limiting factor. We performed a time series experiment in a mesocosm to simulate the transition from aerobic to anaerobic conditions at the sediment-water interface. Our goal was to identify changes in the microbial activity due to redox transitions induced by successive depletion of available electron acceptors. Monitoring critical hydrochemical parameters in the overlying water in conjunction with a new sampling strategy for sediment bacteria enabled us to correlate redox changes in the water to shifts in the active microbial community and the expression of functional genes representing specific redox-dependent microbial processes. Our results show that during several transitions from oxic-heterotrophic condition to sulfate-reducing condition, nitrate-availability and the on-set of sulfate reduction strongly affected the corresponding functional gene expression. There was evidence of anaerobic methane oxidation with NOx. DGGE analysis revealed redox-related changes in microbial activity and expression of functional genes involved in sulfate and nitrite reduction, whereas methanogenesis and methanotrophy showed only minor changes during redox transitions. The combination of high-frequency chemical measurements and molecular methods provide new insights into the temporal dynamics of the interplay between microbial activity and specific redox transitions at the sediment-water interface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 509 KW - anaerobic methane oxidation KW - oligotrophic lake Stechlin KW - ribosomal RNA KW - vertical-distribution KW - coastal sediments KW - sulfate reduction KW - Shallow Lake KW - bacteria KW - carbon KW - communities Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408464 SN - 1866-8372 IS - 509 ER -