TY - GEN A1 - Woodfield, Emma E. A1 - Horne, Richard B. A1 - Glauert, Sarah A. A1 - Menietti, John D. A1 - Shprits, Yuri Y. A1 - Kurth, William S. T1 - Formation of electron radiation belts at Saturn by Z-mode wave acceleration T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - At Saturn electrons are trapped in the planet's magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 R-S (1 R-S = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an electron energy spectrum that closely approaches observed values without any transport effects included. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1032 KW - astrophysical plasmas KW - giant planets KW - magnetospheric physics KW - diffusion KW - pitch angle KW - plasma KW - radio KW - region Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468342 SN - 1866-8372 IS - 1032 ER - TY - GEN A1 - Shprits, Yuri Y. A1 - Menietti, J. D. A1 - Drozdov, Alexander A1 - Horne, Richard B. A1 - Woodfield, Emma E. A1 - Groene, J. B. A1 - de Soria-Santacruz, M. A1 - Averkamp, T. F. A1 - Garrett, H. A1 - Paranicas, C. A1 - Gurnett, Don A. T1 - Strong whistler mode waves observed in the vicinity of Jupiter's moons T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Understanding of wave environments is critical for the understanding of how particles are accelerated and lost in space. This study shows that in the vicinity of Europa and Ganymede, that respectively have induced and internal magnetic fields, chorus wave power is significantly increased. The observed enhancements are persistent and exceed median values of wave activity by up to 6 orders of magnitude for Ganymede. Produced waves may have a pronounced effect on the acceleration and loss of particles in the Jovian magnetosphere and other astrophysical objects. The generated waves are capable of significantly modifying the energetic particle environment, accelerating particles to very high energies, or producing depletions in phase space density. Observations of Jupiter's magnetosphere provide a unique opportunity to observe how objects with an internal magnetic field can interact with particles trapped in magnetic fields of larger scale objects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 695 KW - electron acceleration KW - magnetic-field KW - diffusion KW - magnetosphere KW - Ganymede Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426278 SN - 1866-8372 IS - 695 ER -