TY - JOUR A1 - Smith, Bryce A. A1 - Barlow, Brad N. A1 - Rosenthal, Benjamin A1 - Hermes, J. J. A1 - Schaffenroth, Veronika T1 - Pulse Timing Discovery of a Three-day Companion to the Hot Subdwarf BPM 36430 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Hot subdwarf B stars are core-helium-burning objects that have undergone envelope stripping, likely by a binary companion. Using high-speed photometry from the Transiting Exoplanet Survey Satellite, we have discovered the hot subdwarf BPM 36430 is a hybrid sdBV(rs) pulsator exhibiting several low-amplitude g-modes and a strong p-mode pulsation. The latter shows a clear, periodic variation in its pulse arrival times. Fits to this phase oscillation imply BPM 36430 orbits a barycenter approximately 10 light-seconds away once every 3.1 days. Using the CHIRON echelle spectrograph on the CTIO 1.5 m telescope, we confirm the reflex motion by detecting a radial-velocity variation with semiamplitude, period, and phase in agreement with the pulse timings. We conclude that a white dwarf companion with minimum mass of approximate to 0.42 M (circle dot) orbits BPM 36430. Our study represents only the second time a companion orbiting a pulsating hot subdwarf or white dwarf has been detected from pulse timings and confirmed with radial velocities. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac9384 SN - 0004-637X SN - 1538-4357 VL - 939 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Pelisoli, Ingrid A1 - Barlow, Brad N. A1 - Geier, Stephan A1 - Kupfer, Thomas T1 - Hot subdwarfs in close binaries observed from space I. BT - orbital, atmospheric, and absolute parameters and the nature of their companions JF - Astronomy and astrophysics : an international weekly journal N2 - Context: About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to di fferent phenomena. Aims: Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods: By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia, and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection e ffect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results: The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, di ffers from those with white dwarf companions, implying they come from di fferent populations. By comparing the period and minimum companion mass distributions, we find that the reflection e ffect systems all have M dwarf or brown dwarf companions, and that there seem to be several di fferent populations of hot subdwarfs with white dwarf binaries - one with white dwarf minimum masses around 0.4 M-circle dot, one with longer periods and minimum companion masses up to 0.6 M-circle dot, and at the shortest period, another with white dwarf minimum masses around 0.8 M-circle dot. We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase. KW - binaries: close KW - subdwarfs KW - white dwarfs KW - stars: late-type KW - stars: KW - horizontal-branch KW - stars: fundamental parameters Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202244214 SN - 0004-6361 SN - 1432-0746 VL - 666 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Casewell, Sarah L. A1 - Schneider, D. A1 - Kilkenny, David A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Irrgang, Andreas A1 - Przybilla, Norbert A1 - Marsh, Thomas R. A1 - Littlefair, Stuart P. A1 - Dhillon, Vik S. T1 - A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era JF - Monthly notices of the Royal Astronomical Society N2 - Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf. KW - stars: abundances KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: horizontal branch KW - stars: low-mass KW - subdwarfs Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa3661 SN - 0035-8711 SN - 1365-2966 VL - 501 IS - 3 SP - 3847 EP - 3870 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Barlow, Brad N. A1 - Geier, Stephan Alfred A1 - Vuckovic, Maja A1 - Kilkenny, D. A1 - Wolz, M. A1 - Kupfer, Thomas A1 - Heber, Ulrich A1 - Drechsel, H. A1 - Kimeswenger, S. A1 - Marsh, T. A1 - Wolf, M. A1 - Pelisoli, Ingrid Domingos A1 - Freudenthal, Joseph A1 - Dreizler, S. A1 - Kreuzer, S. A1 - Ziegerer, E. T1 - The EREBOS project: Investigating the effect of substellar and low-mass stellar companions on late stellar evolution Survey, target selection, and atmospheric parameters JF - Astronomy and astrophysics : an international weekly journal N2 - Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. KW - binaries: eclipsing KW - brown dwarfs KW - binaries: spectroscopic KW - binaries: close KW - subdwarfs KW - surveys Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201936019 SN - 1432-0746 VL - 630 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Reindl, Nicole A1 - Schaffenroth, Veronika A1 - Filiz, Semih A1 - Geier, Stephan A1 - Pelisoli, Ingrid A1 - Kepler, Souza Oliveira T1 - Mysterious, variable, and extremely hot BT - White dwarfs showing ultra-high excitation lines: I. Photometric variability JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context. About 10% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O VIII) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole population of UHE white dwarfs, and white dwarfs showing only the He II line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He II line problem. Results. We find that 75(-13)(+8) % of the UHE white dwarfs, and 75(-19)(+9)% of the He II line problem white dwarfs are significantly photometrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9(2)(+4)%), marking UHE and He II line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He II line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible. KW - white dwarfs KW - stars: variables: general KW - starspots KW - binaries: close Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202140289 SN - 1432-0746 VL - 647 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan Alfred A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen 2-428 JF - Galaxies N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - supernovae Y1 - 2018 U6 - https://doi.org/10.3390/galaxies6030088 SN - 2075-4434 VL - 6 IS - 3 ER - TY - JOUR A1 - Pelisoli, Ingrid A1 - Vos, Joris A1 - Geier, Stephan A1 - Schaffenroth, Veronika A1 - Baran, Andrzej S. T1 - Alone but not lonely BT - observational evidence that binary interaction is always required to form hot subdwarf stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs. KW - subdwarfs KW - binaries: general KW - stars: variables: general Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038473 SN - 0004-6361 SN - 1432-0746 VL - 642 PB - EDP Sciences CY - Les Ulis ER - TY - GEN A1 - Finch, Nicolle L. A1 - Braker, I. P. A1 - Reindl, Nicole A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Burleigh, M. A1 - Kupfer, Thomas A1 - Kilkenny, D. A1 - Geier, Stephan Alfred A1 - Schaffenroth, Veronika A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan A1 - Freudenthal, Joseph T1 - Spectral Analysis of Binary Pre-white Dwarf Systems T2 - Radiative signatures from the cosmos N2 - Short period double degenerate white dwarf (WD) binaries with periods of less than similar to 1 day are considered to be one of the likely progenitors of type Ia supernovae. These binaries have undergone a period of common envelope evolution. If the core ignites helium before the envelope is ejected, then a hot subdwarf remains prior to contracting into a WD. Here we present a comparison of two very rare systems that contain two hot subdwarfs in short period orbits. We provide a quantitative spectroscopic analysis of the systems using synthetic spectra from state-of-the-art non-LTE models to constrain the atmospheric parameters of the stars. We also use these models to determine the radial velocities, and thus calculate dynamical masses for the stars in each system. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 231 EP - 238 PB - Astronomical soc pacific CY - San Fransisco ER - TY - JOUR A1 - Chougule, Abhishek A1 - Przybilla, Norbert A1 - Dimitrijevic, Milan S. A1 - Schaffenroth, Veronika T1 - The impact of improved Stark-broadening widths on the modeling of double-ionized chromium lines in hot stars JF - Contributions of the Astronomical Observatory Skalnate Pleso = Práce Astronomického Observatória na Skalnatom Plese N2 - Stellar atmosphere modeling and chemical abundance determinations require the knowledge of spectral line shapes. Spectral lines of chromium in various ionization stages are common in stellar spectra but detailed data on Stark broadening for them is scarce. Recently we reported on the first calculations of Stark widths for several 4s-4p transitions of double-ionized chromium, employing the Modified Semi-Empirical approach (MSE). In this work we present applications of the data to spectrum synthesis of Cr III lines in the ultraviolet region of hot stars. The Atlas9 model atmosphere code and the line-formation code Surface were used with the assumption of local thermodynamic equilibrium. The improvements of adopting the MSE broadening tables instead of approximate Stark broadening coefficients are investigated for a total of 56 Cr III lines visible in HST/STIS spectra of the B3 subgiant star Iota Herculis and the subdwarf B-star Feige 66. KW - line: profiles KW - stars: abundances Y1 - 2020 U6 - https://doi.org/10.31577/caosp.2020.50.1.139 SN - 1335-1842 SN - 1336-0337 VL - 50 IS - 1 SP - 139 EP - 146 PB - Astronomický Ústav SAV CY - Tatranská Lomnica ER -