TY - JOUR A1 - Tan, Li A1 - Liu, Bing A1 - Siemensmeyer, Konrad A1 - Glebe, Ulrich A1 - Böker, Alexander T1 - Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticlesipoly(N-isopropylacrylamide) JF - Journal of colloid and interface science N2 - Novel nanocomposites of superparamagnetic cobalt nanoparticles (Co NPs) and poly(N-isopropylacrylamide) (PNIPAM) were fabricated through surface-initiated atom-transfer radical polymerization (SI-ATRP). We firstly synthesized a functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator). Oleic acid- and trioctylphosphine oxide-coated Co NPs were then modified with the initiator via ligand exchange. The process is facile and rapid for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and dynamic light scattering measurements confirmed the success of ligand exchange. The following polymerization of NIPAM was conducted on the surface of Co NPs. Temperature-dependent dynamic light scattering study showed the responsive behavior of PNIPAM-coated Co NPs. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine. (C) 2018 Elsevier Inc. All rights reserved. KW - Nanoparticles KW - Superparamagnetic KW - Surface-initiated atom-transfer radical KW - polymerization KW - Responsivity Y1 - 2018 U6 - https://doi.org/10.1016/j.jcis.2018.04.074 SN - 0021-9797 SN - 1095-7103 VL - 526 SP - 124 EP - 134 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Tan, Li A1 - Liu, Bing A1 - Siemensmeyer, Konrad A1 - Glebe, Ulrich A1 - Böker, Alexander T1 - Synthesis of Polystyrene-Coated Superparamagnetic and Ferromagnetic Cobalt Nanoparticles JF - Polymers N2 - Polystyrene-coated cobalt nanoparticles (NPs) were synthesized through a dual-stage thermolysis of cobalt carbonyl (Co-2(CO)(8)). The amine end-functionalized polystyrene surfactants with varying molecular weight were prepared via atom-transfer radical polymerization technique. By changing the concentration of these polymeric surfactants, Co NPs with different size, size distribution, and magnetic properties were obtained. Transmission electron microscopy characterization showed that the size of Co NPs stabilized with lower molecular weight polystyrene surfactants (M-n = 2300 g/mol) varied from 12-22 nm, while the size of Co NPs coated with polystyrene of middle (M-n = 4500 g/mol) and higher molecular weight (M-n = 10,500 g/mol) showed little change around 20 nm. Magnetic measurements revealed that the small cobalt particles were superparamagnetic, while larger particles were ferromagnetic and self-assembled into 1-D chain structures. Thermogravimetric analysis revealed that the grafting density of polystyrene with lower molecular weight is high. To the best of our knowledge, this is the first study to obtain both superparamagnetic and ferromagnetic Co NPs by changing the molecular weight and concentration of polystyrene through the dual-stage decomposition method. KW - cobalt nanoparticles KW - polystyrene KW - superparamagnetic KW - ferromagnetic KW - molecular weight Y1 - 2018 U6 - https://doi.org/10.3390/polym10101053 SN - 2073-4360 VL - 10 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tan, Li A1 - Liu, Bing A1 - Glebe, Ulrich A1 - Böker, Alexander T1 - Magnetic Field-Induced Assembly of Superparamagnetic Cobalt Nanoparticles on Substrates and at Liquid-Air Interface JF - Langmuir N2 - Superparamagnetic cobalt nanoparticles (Co NPs) are an interesting material for self-assembly processes because of their magnetic properties. We investigated the magnetic field-induced assembly of superparamagnetic cobalt nanoparticles and compared three different approaches, namely, the assembly on solid substrates, at water-air, and ethylene glycol-air interfaces. Oleic acid- and trioctylphosphine oxide-coated Co NPs were synthesized via a thermolysis of cobalt carbonyl and dispersed into either hexane or toluene. The Co NP dispersion was dropped onto different substrates (e.g., transmission electron microscopy (TEM) grid, silicon wafer) and onto liquid surfaces. Transmission electron microscopy (TEM), scanning force microscopy, optical microscopy, as well as scanning electron microscopy showed that superparamagnetic Co NPs assembled into one-dimensional chains in an external magnetic field. By varying the concentration of the Co NP dispersion (1-5 mg/mL) and the strength of the magnetic field (4-54 mT), the morphology of the chains changed. Short, thin, and flexible chain structures were obtained at low NP concentration and low strength of magnetic field, whereas they became long, thick and straight when the NP concentration and the magnetic field strength increased. In comparison, the assembly of Co NPs from hexane dispersion at ethylene glycol-air interface showed the most regular and homogeneous alignment, since a more efficient spreading could be achieved on ethylene glycol than on water and solid substrates. Y1 - 2018 U6 - https://doi.org/10.1021/acs.langmuir.8b02673 SN - 0743-7463 VL - 34 IS - 46 SP - 13993 EP - 14002 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schürings, Marco-Philipp A1 - Nevskyi, Oleksii A1 - Eliasch, Kamill A1 - Michel, Ann-Katrin A1 - Liu, Bing A1 - Pich, Andrij A1 - Böker, Alexander A1 - von Plessen, Gero A1 - Wöll, Dominik T1 - Diffusive Motion of Linear Microgel Assemblies in Solution JF - Polymers N2 - Due to the ability of microgels to rapidly contract and expand in response to external stimuli, assemblies of interconnected microgels are promising for actuation applications, e.g., as contracting fibers for artificial muscles. Among the properties determining the suitability of microgel assemblies for actuation are mechanical parameters such as bending stiffness and mobility. Here, we study the properties of linear, one-dimensional chains of poly(N-vinylcaprolactam) microgels dispersed in water. They were fabricated by utilizing wrinkled surfaces as templates and UV-cross-linking the microgels. We image the shapes of the chains on surfaces and in solution using atomic force microscopy (AFM) and fluorescence microscopy, respectively. In solution, the chains are observed to execute translational and rotational diffusive motions. Evaluation of the motions yields translational and rotational diffusion coefficients and, from the translational diffusion coefficient, the chain mobility. The microgel chains show no perceptible bending, which yields a lower limit on their bending stiffness. KW - microgels KW - linear assemblies KW - in situ fluorescence microscopy KW - shape analysis KW - rotational diffusion KW - translational diffusion KW - bending stiffness KW - actuation Y1 - 2016 U6 - https://doi.org/10.3390/polym8120413 SN - 2073-4360 VL - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Liu, Bing A1 - Böker, Alexander T1 - Measuring rotational diffusion of colloidal spheres with confocal microscopy JF - Soft matter N2 - We report an experimental method to measure the translational and rotational dynamics of colloidal spheres in three dimensions with confocal microscopy and show that the experimental values reasonably agree with the theoretical values. This method can be extended to study rotational dynamics in concentrated colloidal systems and complex bio-systems. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01082b SN - 1744-683X SN - 1744-6848 VL - 12 SP - 6033 EP - 6037 PB - Royal Society of Chemistry CY - Cambridge ER -