TY - THES A1 - Hentrich, Doreen T1 - Grenzflächen-kontrollierte Mineralisation von Calciumphosphat T1 - Interface-controlled mineralization of calcium phosphate N2 - In der vorliegenden Arbeit konnte gezeigt werden, dass die beiden verwendeten Amphiphile mit Cholesterol als hydrophoben Block, gute Template für die Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfläche sind. Mittels Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS), Röntgenphotoelektronenspektroskopie (XPS), Energie dispersiver Röntgenspektroskopie (EDXS), Elektronenbeugung (SAED) und hochauflösende Transmissionselektronenmikroskopie (HRTEM) konnte die erfolgreiche Mineralisation von Calciumphosphat für beide Amphiphile an der Wasser/Luft-Grenzfläche nachgewiesen werden. Es konnte auch gezeigt werden, dass das Phasenverhalten der beiden Amphiphile und die bei der Mineralisation von Calciumphosphat gebildeten Kristallphasen nicht identisch sind. Beide Amphiphile üben demnach einen unterschiedlichen Einfluss auf den Mineralisationsverlauf aus. Beim CHOL-HEM konnte sowohl nach 3 h als auch nach 5 h Octacalciumphosphat (OCP) als einzige Kristallphase mittels XPS, SAED, HRTEM und EDXS nachgewiesen werden. Das A-CHOL hingegen zeigte bei der Mineralisation von Calciumphosphat nach 1 h zunächst eine nicht eindeutig identifizierbare Vorläuferphase aus amorphen Calciumphosphat, Brushit (DCPD) oder OCP. Diese wandelte sich dann nach 3 h und 5 h in ein Gemisch, bestehend aus OCP und ein wenig Hydroxylapatit (HAP) um. Die Schlussfolgerung daraus ist, dass das CHOL-HEM in der Lage ist, dass während der Mineralisation entstandene OCP zu stabilisieren. Dies geschieht vermutlich durch die Adsorption des Amphiphils bevorzugt an der OCP Oberfläche in [100] Orientierung. Dadurch wird die Spaltung entlang der c-Achse unterdrückt und die Hydrolyse zum HAP verhindert. Das A-CHOL ist hingegen sterisch anspruchsvoller und kann wahrscheinlich aufgrund seiner Größe nicht so gut an der OCP Kristalloberfläche adsorbieren verglichen zum CHOL HEM. Das CHOL-HEM kann also die Hydrolyse von OCP zu HAP besser unterdrücken als das A-CHOL. Da jedoch auch beim A-CHOL nach einer Mineralisationszeit von 5 h nur wenig HAP zu finden ist, wäre auch hier ein Stabilisierungseffekt der OCP Kristalle möglich. Um eine genaue Aussage darüber treffen zu können, sind jedoch zusätzliche Kontrollexperimente notwendig. Es wäre zum einen denkbar, die Mineralisationsexperimente über einen längeren Zeitraum durchzuführen. Diese könnten zeigen, ob das CHOL-HEM die Hydrolyse vom OCP zum HAP komplett unterdrückt. Außerdem könnte nachgewiesen werden, ob beim A-CHOL das OCP weiter zum HAP umgesetzt wird oder ob ein Gemisch beider Kristallphasen erhalten bleibt. Um die Mineralisation an der Wasser/Luft-Grenzfläche mit der Mineralisation in Bulklösung zu vergleichen, wurden zusätzlich Mineralisationsexperimente in Bulklösung durchgeführt. Dazu wurden Nitrilotriessigsäure (NTA) und Ethylendiamintetraessigsäure (EDTA) als Mineralisationsadditive verwendet, da NTA unter anderem der Struktur der hydrophilen Kopfgruppe des A-CHOLs ähnelt. Es konnte gezeigt werden, dass ein Vergleich der Mineralisation an der Grenzfläche mit der Mineralisation in Bulklösung nicht ohne weiteres möglich ist. Bei der Mineralisation in Bulklösung wird bei tiefen pH-Werten DCPD und bei höheren pH-Werten HAP gebildet. Diese wurde mittels Röntgenpulverdiffraktometrie Messungen nachgewiesen und durch Infrarotspektroskopie bekräftigt. Die Bildung von OCP wie an der Wasser/Luft-Grenzfläche konnte nicht beobachtet werden. Es konnte auch gezeigt werden, dass beide Additive NTA und EDTA einen unterschiedlichen Einfluss auf den Verlauf der Mineralisation nehmen. So unterscheiden sich zum einen die Morphologien des gebildeten DCPDs und zum anderen wurde beispielsweise in Anwesenheit von 10 und 15 mM NTA neben DCPD auch HAP bei einem Ausgangs-pH-Wert von 7 nachgewiesen. Da unser Augenmerk speziell auf der Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfläche liegt, könnten Folgeexperimente wie beispielsweise GIXD Messungen durchgeführt werden. Dadurch wäre es möglich, einen Überblick über die gebildeten Kristallphasen nach unterschiedlichen Reaktionszeiten direkt auf dem Trog zu erhalten. Es konnte weiterhin gezeigt werden, dass auch einfache Amphiphile in der Lage sind, die Mineralisation von Calciumphosphat zu steuern. Amphiphile mit Cholesterol als hydrophoben Block bilden offensichtlich besonders stabile Monolagen an der Wasser/Luft-Grenzfläche. Eine Untersuchung des Einflusses ähnlicher Amphiphile mit unterschiedlichen hydrophilen Kopfgruppen auf das Mineralisationsverhalten von Calciumphosphat wäre durchaus interessant. N2 - In the current thesis two amphiphiles were used as templates for the mineralization of calcium phosphate at the air-water interface. Both amphiphiles have a cholesteryl group as hydrophobic block and only differ in their hydrophilic unit. The amphiphile CHOL-HEM has one carboxylic acid as the hydrophilic unit and the amphiphile A-CHOL contains a Newkome type dendron as hydrophilic block. The successful mineralization of calcium phosphate at the air-water interface could be prove by infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and high resolution transmission electron microscopy. Furthermore, the study shows that the two amphiphiles have a different influence on the mineralization leading to different calcium phosphate phases. The crystal phase formed in case of the CHOL-HEM is octacalcium phosphate (OCP). For the A-CHOL a precursor phase after 1 h mineralization time was formed which could not be identified clearly. The precursor phase could be amorphous calcium phosphate, dicalcium hydrogen phosphate dihydrate (DCPD) or OCP. This phase transformed into a mixture of OCP and a small amount of hydroxyapatite (HAP). In conclusion, it can be demonstrated that the CHOL-HEM is able to stabilize the OCP. This could happen by the adsorption of the amphiphile at the OCP crystal surface in [100] direction and therefore the splitting along the c-axis is hampered and the hydrolysis into HAP will be prevented. The hydrophilic block of the A-CHOL is much bigger and sterically more demanding. For that reason, the A-CHOL cannot adsorb at the OCP crystal surface as good as the CHOL-HEM. The CHOL-HEM can prevent the hydrolysis from OCP into HAP much more efficiently. Due to the fact, that after 5 h mineralization time using A-CHOL as template just a small amount of HAP could be identified suggests that also this amphiphile shows a stabilizing effect on the OCP crystals. To prove this, additional control experiments would be necessary. The A-CHOL shows a better control in terms of the orientation of the mineralized crystals, which could be mostly identified as OCP crystals in [110] and HAP crystals in [-110] orientation. For the CHOL-HEM no preferred orientation could be determined for the formed OCP crystals. Additional mineralization experiments in bulk solution using ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and nitrilotriacetic acid (NTA) as mineralization additives were performed. The structure of the NTA is similar to the hydrophilic unit of the A-CHOL. The study shows that the comparison of the mineralization at the air-water interface with the mineralization in bulk solution is not easily possible. For the mineralization in bulk solution at low pH values DCPD and at high pH values HAP is formed. These two phases could be identified using X-ray powder diffraction and infrared spectroscopy. The formation of OCP like for the mineralization at the air-water interface could not be observed. Both additives, EDTA and NTA show a different influence on the mineralization progress and show for example different morphologies of the precipitated DCPD. KW - Calciumphosphat KW - Mineralisation KW - Wasser-Luft-Grenzfläche KW - calcium phosphate KW - mineralization KW - air-water interface Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398236 ER - TY - THES A1 - Bleek, Katrin T1 - Phosphonathaltige (Co)Polymere und ihr Einfluss auf die Mineralisation von Calciumphosphat T1 - Phosphonate containing (co)polymers and their influence on the mineralisation of calcium phosphate N2 - In der vorliegenden Arbeit wurden verschiedene Polymere hergestellt, die bestimmte funktionelle Gruppen beinhalten. Diese Gruppen werden zum Teil durch Alkylketten geschützt, zum Teil liegen sie ungeschützt im Polymer vor. Mit diesen Polymeren wurden Untersuchungen mit knochenähnlichen Materialien sogenanntem Calciumphosphat durchgeführt. Es wurde der Einfluss der verschiedenen Polymere auf die Bildung dieser knochenähnlichen Substanzen untersucht und auch der Einfluss auf die Stabilität und das Auflösungsverhalten der Calciumphosphate. Dabei sollte ein besonderes Augenmerk auf die funktionellen Gruppen, sogenannte Phosphonsäuren und deren Ester, die die Phosphonsäuren schützen, gesetzt werden. Es stellte sich heraus, dass bei der Bildung der knochenähnlichen Materialien die Polymere mit Estergruppen eine leichte Förderung der Calciumphosphat-Bildung verursachen, während die ungeschützten Polymere die Bildung des „Knochenmaterials“ sehr stark verzögern. Dieser Effekt verstärkt sich noch, wenn eine weitere bestimmte Komponente zum Polymer hinzukommt und somit ein Copolymer gebildet wird. Diese Copolymere beschleunigen bzw. verlangsamen die Calciumphosphatbildung noch stärker. Werden Polymere mit einem anderen Polymergerüst aber den gleichen Phosphonsäuresetern in den Seitenketten verwendet, ändert sich der Einfluss der Calciumphosphat-Bildung wenig. Verglichen mit Polymeren ohne solche Phosphonsäuregruppen wird erkennbar, dass es weniger die Phosphonsäuregruppe ist, die die Mineralisation beeinflusst, sondern es eher eine Folge der Säure im Polymer ist. Wird die Stabilisierung und Auflösung der Knochenähnlichen Substanzen betrachtet, fällt auf, dass auch hier wieder die Säuren den größten Effekt ausüben. Die Phosphonsäuregruppen scheinen dabei jedoch tatsächlich einen besonderen Effekt auszuüben, da bei diesen die Stabilisierung und auch das Auflösungsvermögen von Calciumphospaht von allen untersuchten Polymeren am größten sind. In der Arbeit konnte außerdem gezeigt werden, dass die Polymere und Copolymere mit Phosphonsäuregruppen einen leicht positiven Effekt auf die Zahngesundheit zeigen. Die Zahl von Bakterien auf der Zahnoberfläche konnte reduziert werden und bei der Untersuchung der Zahnauflösung wurde eine glattere Zahnoberfläche erhalten, jedoch wurde auch mit den untersuchten Polymeren der Zahn im Inneren angegriffen. Weitere Untersuchungen können hier noch genaueren Aufschluss geben. Außerdem sollten auch die Polymere mit dem unterschiedlichen Polymergerüst und Phosphonsäureestergruppen untersucht werden. Letztere Polymere wurden verwendet, um festere “gelartige“ Polymernetzwerke herzustellen und deren Einfluss auf die Calciumphosphatmineralisation zu untersuchen. Es stellte sich heraus, dass ohne das Einbetten einiger Calciumphosphatteilchen keine Bildung von Calciumphospaht an den Materialien ausgelöst wurde, wurden die sogenannten Hydrogele jedoch mit Calciumphosphatpartikeln geimpft, konnte deutliches weiteres Calciumphosphatwachstum beobachtet werden. Das Material lässt sich auch in verschiedene Formen bringen. Somit könnte das System nach weiteren Untersuchungen zur Verträglichkeit mit Zellen oder Geweben ein mögliches Material für Implantate darstellen, mit denen gezielt Knochenwachstum eingeleitet werden könnte. N2 - In the present work, various polymers containing certain functional groups have been prepared. Some of these groups are protected by alkyl chains, some of which are unprotected in the polymer. With these polymers, investigations were carried out with bone-like materials called calcium phosphate. The influence of the different polymers on the formation of these bone-like substances was investigated and also the influence on the stability and the dissolution behavior of the calcium phosphates. Particular attention should be paid to the functional groups, so-called phosphonic acids and their esters, which protect the phosphonic acids. It has been found that in the formation of the bone-like materials, the polymers with ester groups cause easy promotion of calcium phosphate formation, while the unprotected polymers greatly retard formation of the "bone material". This effect is further enhanced when a further specific component is added to the polymer and thus a copolymer is formed. These copolymers accelerate or slow calcium phosphate formation even more. If polymers with a different polymer backbone but the same phosphonic acid in the side chains used, the influence of calcium phosphate formation changes little. Compared with polymers without such phosphonic acid groups, it will be appreciated that it is less the phosphonic acid group that affects mineralization, but rather is a consequence of the acid in the polymer. If the stabilization and dissolution of the bone-like substances is considered, it is noticeable that here too the acids exert the greatest effect. The phosphonic acid groups, however, actually seem to exert a special effect, since in these the stabilization and also the dissolving power of calcium phosphate are the greatest of all the polymers investigated. The work also showed that the polymers and copolymers with phosphonic acid groups have a slightly positive effect on dental health. The number of bacteria on the surface of the tooth could be reduced, and in the study of tooth dissolution, a smoother tooth surface was obtained, but also with the investigated polymers the tooth was attacked inside. Further investigations can provide even more detailed information here. In addition, the polymers with the different polymer backbone and phosphonic ester groups should also be investigated. The latter polymers were used to make firmer "gel-like" polymer networks and study their influence on calcium phosphate mineralization. It was found that without the incorporation of some calcium phosphate particles no formation of calcium phosphate on the materials was initiated, however, the so-called hydrogels were inoculated with calcium phosphate particles, and significant further calcium phosphate growth could be observed. The material can also be put into different shapes. Thus, after further studies on compatibility with cells or tissues, the system could be a potential material for implants to target bone growth. KW - Calciumphosphat KW - Calcium phosphate KW - polymervermittelte Biomineralisation KW - polymer induced Biomineralization KW - phosphonathaltige Polymere KW - phosphonate containing polymers KW - Calcium Bindungsstelle KW - Calcium binding site Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406630 ER -